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CHAPTER ONE
BASIC CONCEPTS AND UNITS

1.1 Introduction

The study of an electrical engineering involves the analysis of the energy transfer from
one form to another or from one point to another. So before beginning the actual study of an
electrical engineering, it is necessary to discuss the fundamental ideas about the basic elements
of an electrical engineering like electromotive force, current, resistance etc. The electricity is
related with number of other types of systems like mechanical, thermal etc. To analyze such
transfer, it is necessary to revise the S.1I. units of measurement of different quantities like work,

power, energy etc. in various systems.

1.2 The Structure of Matter

The structure of matter plays an important role in the understanding of fundamentals of

electricity. The matter which occupies the space may be solid, liquid or gaseous. The atom is

composed of three fundamental particles: neutron, proton and the electron.

Fundamental Nature of charge .
particles of matter Symbol possessed ) Mass In Kg.
Neutron n 0 1.675x10%'
proton p+ + 1.675x10%
electron e - 9.107x10°*

1.3 Concept of Charge

Key Point: Charge is an electrical property of the atomic particles of which matter
consists, measured in coulombs (C).

The following table shows the different particles and charge possessed by them.

Particle Charge possessed in Coulomb Nature

Neutron 0 Neutral

Proton 1.602x10™"° Positive

Electron 1.602x10™ Negative

1.3.1 Unit of Charge
As seen from the Table 1.2 that the charge possessed by the electron is very very small
hence it is not convenient to take it as the unit of charge. The unit of the measurement of the

charge is Coulomb, so one coulomb charge is defined as
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1 coulomb= charge on 6.24x10" electrons

The charge associated with one electron can then be determined from

1C
= = — = —-19
Charge/electron = e =54 x 1018 1.602 x 107°C

1.4 Concept of Electromotive Force and Current

e The free electrons are responsible for the flow of electric current.
e A conductor is one which has abundant free electrons. The free electrons in such a

conductor are always moving in random directions.

mmmlp- Direction of conventional current
is opposite Lo the direction of

flow of electrons 17 Inside the conductor

®: @ @ i@

ﬁ —-————— &
. Flow of alectrons

I :..‘.....‘: - (- ve to + ve)

==
Direction of 1.1 ie— Electric cen
conventional current —
(+ve 1o - va)

Figure 1.2 the flow of current.

The small electrical effort, externally applied to such conductor makes all such free
electrons to drift along the metal in a definite particular direction. This direction depends on
how the external electrical effort is applied to the conductor. Such physical phenomenon is

represented in the Fig.1.2.

e The free electrons as are negatively charged get attracted by positive of the cell connected.

e The flow of electrons from negative to positive of the cell.

e This movement of electron is called an Electric Current. The movement of electrons is
always from negative to positive while movement of current is always assumed as from

positive to negative. This called direction of conventional current.

1.5 Relation between Charge and Current

The current is flow of electrons. Thus current can be measured by measuring how many
electrons are passing through material per second. This can be expressed in terms of the charge

carried by those electrons in the material per second.

Key Point: Electric current is the time rate of change of charge, measured in amperes (A).
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Mathematically we can write the relation between the charge (Q) and the electric current (1) as,

i=21 (1.1)
Where current is measured in amperes (A), and

1 ampere = 1 coulomb/second
The charge transferred between time t, and t is obtained by integrating both sides of Eq. (1.1).

We obtain

€ g
q= fto idt (1.2)
| =% Ampere (1.3)
Where I = average current flowing,  Q = total charge transferred

t = time required for transfer of charge.

Definition of 1 Ampere: A current of 1 Ampere is said to be flowing in the conductor when a

charge of one coulomb is passing any given point on it in one second.
1 Ampere current = Flow of 6.24x 10*® electrons per second

Example 1.1: Determine the time required for 4x10'° electrons to pass through the imaginary

surface of Fig. 1.5 if the current is 5 mA.

Solution: Determine Q

1C

=4x 10 =0.641x10"2C = 6.41mC
Q 6.24 x 1018electron m

Q _ 641x1073C

Calculate t t=1=" 107,

=1.282s

1.6 Concept of Electric Potential and Potential Difference

Key Point: potential is the energy required to move a unit charge through an element, measured in volts

(V).

The electric potential at point due to a charge is one volt if one joule of work is done in
moving a unit positive charge i.e. positive charge of one coulomb from Infinity to that point.

Mathematically it is expressed as
Eledrical Potential = work done/charge = dw/dg= W/Q (1.4)
1 volt = 1 joule/coulomb = 1 newton.meter/coulomb

In electric circuit flow of current is always from higher electric potential to lower electric

potential. So we can define potential difference as below:

Key Point: the difference between the electric potential at any two given points in a circuit is known as
potential difference (p.d.) and measured in volts (V).
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Thus, when two points have different potential, the electric current flows from higher
potential to lower potential i.e. the electrons start flowing from lower potential to higher
potential. No current can flow if the potential difference between the two points is zero.

1.7 Resistance

When the electrons begins flow in the metal. The ions get formed which are charged
particles as discussed earlier. Now free electrons are moving in specific direction when
connected to external source of e.m.f. So such ions always become obstruction for the flowing
electrons. So there is collision between ions and free flowing electrons. This not only reduces
the speed of electrons but also produced the heat. The effect of this is nothing but the reduction

of flow of current. Thus the material opposes the flow of current.

Key Point: This property of an electric current circuit tending to prevent the flow of current and at the same time
causes electrical energy to be converted to heat is called resistance.

The resistance is denoted by the symbol 'R’ and is measured in ohm symbolically represented

as Q. We can define unit ohm as below.

Key Point: 1 Ohm: Is the resistance of a circuit, when a current of 1 Ampere generates the heat at the rate of one
joules per second.

1.7.1 Factors Affecting the Resistance

1. Length of the material: The Length is denoted by 'I'.
2. Cross-section area: The cross sectional area is denoted by ' a'.
3. The type and nature of the material:
4. Temperature: The temperature of the material affects the value of the resistance.
So for a certain material at a certain temperature we can write a mathematical expression as,
pl

R = " (1.5)

Where I=length in meters, a= cross-sectional area in square meters

p= resistivity in ohms-meters, R= resistance in ohms

1.8 Resistivity and Conductivity

The resistivity or specific resistance of a material depends on nature of material and
denoted by p (rho). From the eq. (1.6) of resistance it can be expressed as,

Ra . Q—m?

P=—

Definition: The resistance of the material having unit length and unit cross-sectional area is

=Q—-m (1.6)

known as its specific resistance or resistivity.

The Table 1.3 gives the values of resistivity of few common materials.
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) o 8 Temperature coefficient at 20°
Material Resistivity in Ohm-metre at 20° (x10°°) .
(x107)
Aluminum, commercial 2.8 40.3
Brass 6-8 20
Carbon 3000-7000 -5
Lead 22
Copper (annealed) 1.73 39.3
German silver
. 20.2 2.7
(84% Cu; 12% Ni; 4% Zn)
Gold 2.44 36.5
Iron 9.8 65
Manganin
. 44-48 0.15
(84% Cu; 12% Mn; 4% Ni)
Mercury 95.8 8.9
Nichrome
108.5 1.5
(60% Cu; 25% Fe; 15% Cr)
Nickel 7.8 54
Platinum 9-15.5 36.7
Silver 1.64 38
Tungsten 5.5 47
Amber 5x10%
Bakelite 10%°
Glass 10%°-10%
Mica 10"
Rubber 10

1.8.1 Conductance (G)

The conductance of any material is reciprocal of its resistance and ill denoted as G. It is the

indication of ease with which current can flow through the material. It is measured in Siemens.

. =3=2-:)-o0)

1.8.2 Conductivity

(1.7)

The quantity (1/p) is called conductivity denoted as ¢ (sigma). Thus the conductivity is the

reciprocal of resistivity. It is measured in Siemens/m.

Key Point: A material having highest value of conductivity is the best conductor while
with poorest value of conductivity is the best insulator.

Example 1.2: A coil consists of 2000 turns of copper wire having a cross-sectional
area of 0.8 mm® The mean length per turn is 80 cm and the resistivity of copper is
0.02pQ-m. Find the resistance of the coil?

Solution:

Length of the coil,  =0.8 * 2000 = 1600 m
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A=08mm?=0.8*10"° m.
R=p(1/A)=0.02*10"% *1600/0.8* 10" ° =40 Q.

Example 1.3: The resistance of copper wire 25 m long is found to be 50 Q. If its diameter is

1mm, calculate the resistivity of copper
Solution: 1=25m, d=1mm, R =50Q
a =n/4(d% = n/4(1%) = 0.7853 mm’?

-6
p="2= 200 = 157x10° Q:m=1.57 pQ-m

Example 1.4: A silver wire has resistance of 2.5 Q. What will be the resistance of a manganin

wire having a diameter, half of the silver wire and length one third? The specific resistance of
manganin is 30 times that of silver.

Solution: R = silver resistance= 2.5 Q, d,,= manganin diameter = d¢/2
I.»= manganin length=I/3, pm= Manganin specific resistance = 30 p;

Now @& zn/4(d32) =. area of cross section for silver

R, =2k= 2k _ 250

ag N %(ds)z

ls
_ Pmlm _ BOPSX(?) _ 10psls
Ry, = nin = =

)

= 40 Ef:l—l;z = 40R, =100 Q  Resistance of manganin
4 S

1.9 Effect of Temperature on Resistance

The resistance of the material affected as temperature ,—m" ons”
of a material change. As example, Atomic structure theory -— .
says that under normal temperature when the metal is Free

subjected to potential difference, ions i.e. unmovable

charged particles get formed inside the metal. The — @

electrons which are moving randomly get aligned in a

particular direction as shown in the fig. 1.3. If temperature " '9ure 1.3 Vibrating ions in conductor.

Increases, the ions gain energy and start oscillating about their mean position and cause
collision and obstruction to the flowing electrons. Due to collision and obstruction due to
higher amplitude of oscillations of ions, the resistance of material increases as temperature
increases. But this is not true for all materials. In some cases the resistance decreases as

temperature increase.
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1.9.3 Effect of Temperature on Alloys

The resistance of alloys increase as the temperature Rato of increase in
resistance is highest

increase but rate of increase is not significant. In

fact, some of alloys show almost no change in Rat
e of increase in

. . . istance is less than metals
resistance for considerable change in the e

temperature like Manganin (alloy of copper,

manganese and nickel), Eureka (alloy of copper and

nickel) etc. Due to this property alloys are used to ) Carbon and Insulators
manufacture the resistance boxes. Fig.1.5 shows the L 1&] —— Jonperaue

effect of temperature on metals, insulating materials

and alloys. Figure 1.5 effect of temperature on resistance.

1.9.4 Effect of Temperature on Semiconductors

The materials having conductivity between that of  ResSance
metals and insulators are called semiconductors such
Resistance decreases
as silicon, germanium etc. At absolute zero S5 TORPpEETS hcrasees.
temperature, the semiconductors behave as perfect \
insulators. TW"
0

For  semiconductor materlals, an increase n Figure 1.6 Effect of temperature on semiconductor.
temperature will result in a decrease in the resistance

level. Consequently, semiconductors have negative temperature coefficients.

The thermistor and photoconductive cell are excellent examples of semiconductor devices with

negative temperature coefficients.

1.10 Resistance Temperature Coefficient (R.T.C.)

Resistance in (2

From the discussion up till now we can conclude that the

\

change in resistance is, " IRQR,/

1) Directly proportional to the initial resistance. :/ . Siope = F:i:::,

2) Directly proportional to the change in temperature. Ry

3) Depends on the nature of the material whether it is a ~ 2 B
0°C 4 t, 100°C

conductor, alloy or insulator.

. . . Figure 1.7 resistance vs. temperature.
Let us consider a conductor, the resistance of which g P

increases with temperature linearly.

Let Ro= Initial resistance at 0 C°, R;= Resistance att; C°, R,=Resistance at t, C°
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As shown in the Fig. 1.7. R,>R;>Rq

Definition of R.T.C.: The resistance temperature coefficient at t C° is the ratio of change in
resistance per degree Celsius to the resistance at t C°. the unit of R. T.C. is 1/C°.

From the Fig. 1.7, change in resistance = R,-R;, change in temperature = t,-t;

: : AR _ R;-R
change in resistance per C° = i ﬁ = the slope of graph
274

Hence according to the definition of R.T.C. we can write a, at t; C° as,

R2—R
__ change inresistance per C° ( 2 l/tz—tl)

a; = - o =
resistance at t; C Ry

1.10.1 Use of R.T.C. In Calculating Resistance at t C°

Let a,= R.T.C.at0C° R, =Resistance at 0 C°, R; = Resistance at t C°
Rt_RO/ .
Then a, = ( _ o) _ R:RR" =—> R.=R, (I+0y 1) (1.8)
0 0

In general, above result can be expressed as
Rfinai= Rinitiar [1F @initial At] (1.9)
1.10.2 Effect of Temperature on R.T.C.

From the above discussion, it is clear that the value of R.T.C. also changes with the
temperature. As the temperature increases, its value decreases. For any metal its value is
maximize at 0 C°.

If starting temperature ist; =0 C° and a at t C° i.e. a is required then we can write,

_ Qo O

1.10.3 Effect of Temperature on Resistivity

Similar to the resistance, the specific resistance or resistivity is a function of temperature. So
similar to resistance temperature coefficient we can define temperature coefficient of resistivity
as fractional change in resistivity per degree centigrade change in temperature from the given

reference temperature.

if p1= resistivity at t; C°, p,= resistivity at t, C°
Then temperature coefficient of resistivity a at t; C° can be defined as,
Ay = (Pz—P1;/(t2—t1) (1.11)
1

Similarly we can write the expression for resistivity at time t C° as,
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p= Po (1+ at)

1.12
Pr= Pu [1+ au (t-11)] ( )

Example 1.5: A certain winding made up of copper has a resistance of 100 Q at room

temperature. If resistance temperature coefficient of copper at 0 C° is 0.00428/C°, calculate the
winding resistance if temperature is increased to 50 C°. Assume room temperature as 25 C°.
Solution:  t,=25C°, R;=100Q, t,=50C° a,=0.00428/C°

Now .
a; =
1+ aot
ap 0.00428
aq = 0.003866/C°

1+ agt; 1+0.00428 x 25
Use R,= R; [1+ a4 (t,-t;)] = 100[1+0.003866(50-25)]

=109.6657 Q resistance at 50 C°

Example 1.6: A specimen of copper has a resistivity (p) and a temperature coefficient of
1.6x10°° ohm-cm at 0 C° and 1/254.5 at 20 C° respectively. Find both of them at 60 C°.

Solution:  po=1.6%10" ohm-cm = 1.6x10° ohm-m,  «, = o at20C°
172545
Now a, a,
a, = al R ——
"7 1+ agt 1+ agy %20
1 B a,
254.5 1+20a, —  11200=25450,
o 1 /] (6]
Ay = 5345 /¢ at0C
ap 1/234.5 1

" 1+a,x60 1+60/2345 294.5
p= Po (1+ aot)

1
=1.6><10_8<1+ ><60)= 2x10%0-m
Peo 234.5

1.11 Fundamental Quantities and Units

Scientists and engineers know that the terms they use, the quantities they measure must
all be defined precisely. Such precise and standard measurements can be specified only if there
is common system of indication of such measurements. This common system of unit is called
'SI" system i.e. International System of Units. The SI system is divided into six base units and
two supplementary units. The six fundamental or base units are length, mass, time, electric

current, temperature, amount of substance and luminous intensity, see table 1.4. The two

CHAPTER ONE BASIC CONCEPTS AND UNITS _



AL-SAFWAH UNIVERSITY COLLEGE ELECTRICAL ENGINEERING FUNDAMENTALS

supplementary units are plane angle and solid angle. All other units are derived which are
obtained from the above two classes of units. The derived units are classified into three main
groups.

1. Mechanical units, 2. Electrical units, 3. Heat units

TABLE 1.4 the six basic Sl units.

Quantity Basic unit Symbol
Length meter m
Mass kilogram kg
Time second S
Electric current ampere A
Thermodynamic temperature kelvin K
Luminous intensity candela cd

1.11.1 Multiples and sub-multiples

One great advantage of the Sl unit is that it uses prefixes based on the power of 10 to
relate larger and smaller units to the basic unit. Table 1.5 shows the Sl prefixes and their
symbols. For example, the following are expressions of the same distance in meters (m):

600,000,000 mm = 600,000 m = 600 km.
TABLE 1.5 the S| prefixes.

Multiplier Prefix Symbol
10" exa E
10" peta P
10% tera T
10° giga G
10° mega M
10° kilo k
10° hecto h
10 deka da
10t deci d
107 centi c
10°3 milli m
10° micro i
10° nano n
10 pico p
0% femto f
108 atto a

v For American automobiles, engine power is rated in a unit called "horsepower," then
1 Horsepower = 745.7 Watt
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1.11.3 Electrical Units

The various electrical units are,

1. Electrical work: In an electric circuit, movement of electrons i.e. transfers of charge is an
electric current. The electrical work is done when there is a transfer of charge. The unit of such
work is Joule.
So if V is potential difference in volts and Q is charge in coulombs then we can write,
Electrical work =W =V x Q J But 1= Q/t,
W=V.It J where t = time in second (1.21)
2. Electrical power: The rate at which electrical work is done in an electric circuit is called an
electrical power.
Electrical power =P =electrical work /time=W/t=V.lL.t/t
P=V.I J/sec i.e. watts (1.22)
Thus power consumed in an electric circuit is 1 wall if the potential difference of 1 volt applied
across the circuit causes 1 ampere current to flow through it.
3. Electrical energy: An electrical energy is the total amount of electrical work done in an
electric circuit.
Electrical energy = E = Power x Time = V.l.t joules (1.23)
The unit of energy is joule or watt-sec.
As watt-sec unit is very small, the electrical energy is measured in bigger units as watt-
hour (Wh) and kilo watt-hour (kwWh). When a power of 1 kW is utilized for 1 hour, the energy

consumed is said to be 1 KWh. This unit is called a Unit.

1.11.5 Efficiency

The efficiency can be defined the ratio of energy output to energy input. It can be also
expressed as ratio of power output to power input. Its value is always less than 1. Higher its
value, more efficient is the system of equipment. Generally it is expressed in percentage, its

symbol .

%n=  Energy output/ Energy input x100
1.27
= Power output/ power input x 100 (1.27)
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Example 1.7: An electric pump lifts 60 m3 of water per hour to a height of 25 m. The

pump efficiency is 82 % and the motor efficiency is 77 %. The pump is used for 3 hours
daily. Find the energy consumed per week, if the mass of 1 - m3 of water is 1000 Kkg.
Solution: 1 m®=1000kg hence m =60 m* = 60000 kg

h=25m, nm =77 %, np = 82 %, time= 1 hour= 3600 sec
Energy output = mgh = 60000 x 9.81x25 =14.715x10°% ]

energy _ 14.715x10°
time 3600

Pout = =4087.5W

pin = Pout _ _40875

= = 6473.7092 w
MmNp 0.82x0.77

Per day 3 hours running hence,
Daily consumption=6473.7092 x 3 = 19.421 kWh
Weekly power consumption =7 x 19.421 = 135.947 kWh

Weekly energy consumption = 135.947x10° x 3600 = 489.4124x10° ]
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CHAPTER TWO
Basic Laws

2.1 Introduction

Chapter 1 introduced basic concepts in an electric circuit. To actually determine the values
of these variables in a given circuit requires that we understand some fundamental laws that
govern electric circuits. These laws, known as Ohm’s law and Kirchhoff’s laws, form the
foundation upon which electric circuit analysis is built. In addition to these laws, we shall
discuss some techniques commonly applied in circuit design and analysis.

2.2 Network Terminology

In this section, we shall define some of the basic terms which are commonly
associated with a network.
1. Network: Any arrangement of the various, electrical energy source along with the
different circuit elements is called an electrical network. Such a network is shown in the
Fig. 2.1.

2. Network Element: Any individual circuit element with two terminals which can be

connected to other circuit element is called a network element. Network elements can be
either active elements or passive elements.

3. Branch: A part of the network which connects the various points of the network with one
another is called a branch. In the Fig. 2.1, AB, BC, CD, DA, DE, CF and EF are the
various branches. The branch may consist of more than one element.

4. Junction Point: A point where three or more branches meet is called a junction point.

Points D and C are the junction points in the network shown in the Fig. 2.1.

5. Node: A point at which two or more elements are joined together is called node. The
junction points are also the nodes of the network. In the network shown in the Fig. 2.1, A,
B, C, D, E and F are the nodes of the network.

6. Mesh (or Loop): Mesh (or Loops) is a set of branches forming a closed path in a network
in such way that if one branch is removed then remaining branches do not form a closed
path. In the Fig. 2.1 paths A-B-C-D-A, A-B-C-F-E-D-A, D-C-F-E-D etc are the loops of
the network.

In this chapter, the analysis of d.c. circuits consisting of pure resistors and d.c.

sources is included.
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2.3 Classification of Electric Networks

The behavior of the entire network depends on the behavior and R,
.. . - ; A B8
characteristics of its elements. Based on such characteristics electrical .
- E, — R
network can be classified as below, i .
D

i) Linear Network: A circuit or network whose parameter i.e. elements are

always constant irrespective of the change in time, voltage, temperature etc. Rq

is known as linear network.

i) Nonlinear Network: A circuit whose parameters change their values  Eigure 2.1 an electrical
network.

with change in time, temperature, voltage etc. is known as nonlinear

network.

iii) Active Network: A circuit whose contain at least one source of energy is called active.

An energy source may be a voltage or current source.

iv) Passive Network: A circuit which contains no energy source is called passive circuit.
This is shown in the Fig 2.2.

Vt’—--' R, () I )

(a) (b)

Figure 2.2 (a) active network, (b) passive network
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2.4 OHM’S LAW

As shows in chapter one, the materials in general have a characteristic behavior of

resisting the flow of electric charge. The resistance R of any material with a uniform cross-
sectional area A depends on A and its length I.

The circuit element used to model the current-resisting behavior of a material

is the resistor. For the purpose of constructing circuits, resistors are usually T li
made from metallic alloys and carbon compounds. The circuit symbol for the  +

resistor is shown in Fig. 2.3, where R stands for the resistance of the resistor. - % *
The resistor is the simplest passive element. Georg Simon Ohm (1787— 4

1854), a German physicist, is credited with finding the relationship Figure 2.3 Circuit

. . . . symbol for resistance.
between current and voltage for a resistor. This relationship is known as y

Ohm’s law.

Key Point: Ohm’s law states that the voltage v across a resistor is directly proportional to
the current i flowing through the resistor.

Ohm defined the constant of proportionality for a resistor to be the resistance; R. (The
resistance is material property which can change if the internal or external conditions of the
element are altered, e.g., if there are changes in the temperature.) Thus,

v=iR (2.1)
The resistance R of an element denotes its ability to resist the flow of electric current; it is
measured in ohms (Q).

Then R =vl/i (2.2)

so that 10=1VI/IA
It should be pointed out that not all resistors obey Ohm’s law. A resistor that obeys Ohm’s
law is known as a linear resistor. It has a constant resistance and thus its current-voltage
characteristic is as illustrated in Fig. 2.4(a). A nonlinear resistor does not obey Ohm’s law.
Its resistance varies with current and its i-v characteristic is typically shown in Fig. 2.4 (b).
Examples of devices with nonlinear resistance are the light bulb and the diode. A useful
quantity in circuit analysis is the reciprocal of resistance R, known as conductance and
denoted by G:

G =1/R =ilv (2.3)
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Slope=R

Slope=R
1

(@) (b)

Figure 2.4 The i-v characteristic of: (a) a linear resistor, (b) a nonlinear resistor.

The conductance is a measure of how well an element will conduct electric current.

The unit of conductance is the mho (ohm spelled backward) or reciprocal ohm, with symbol
O, the inverted omega. Although engineers often use the mhos, in this lectures we prefer to
use the Siemens (S), the Sl unit of conductance:

1S=10=1ANV
Thus,
Conductance is the ability of an element to conduct electric current; it is measured
in mhos (O) or Siemens (S).
From Eg. (2.3), we may write

i=Gv (2.4)
The power dissipated by a resistor can be expressed in terms of R. Using Egs. (1.23) and
(2.2),

p=vi=i’R=V4JR (2.5)
The power dissipated by a resistor may also be expressed in terms of G as
p = vi = V’G =i¥/G (2.6)

We should note two things from Egs. (2.5) and (2.6):

1. The power dissipated in a resistor is a nonlinear function of either current or voltage.

2. Since R and G are positive quantities, the power dissipated in a resistor is always
positive. Thus, a resistor always absorbs power from the circuit.

2.4.1 Limitations of Ohm's Law

The Limitations of the Ohm's law are,
1) It is not applicable to the nonlinear devices such as diode, zener diode, voltage regulators.
2) It does not hold good for non-metallic conductors such as silicon carbide. The law for

such conductors is given by, V=kI" where Kk, m are constants.
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EXAMPLE 2.1: An electric iron draws 2 A at 120 V. Find its resistance.
Solution:
From Ohm’s law, R =v/i =120/2 =60 Q

EXAMPLE 2.2: In the circuit shown below, calculate the current i, the conductance G,

and the power P.

Solution: if
The voltage across the resistor is the same as the source voltage (30 V) v @ ke g-v
because the resistor and the voltage source are connected to the same
pair of terminals. Hence, the current is
i=v/R=30 X5 X 10°=6 mA
The conductance is G=1R=1/5X 10°=0.2mS
We can calculate the power in various ways using either Egs. (1.29), (2.5), or (2.6).
p=vi=30X (6 X 107 =180 mwW
PRACTICE PROBLEM 2.1: For the circuit shown below, calculate the voltage v, the
conductance G, and the power p. |

Answer: 20V, 100 uS, 40 mW. LT

2mA. 10kQ 2 v

2.5 SERIES RESISTORS

A series circuit is one in which several resistances
are connected one after the other. There is only one

path for the flow of current. Consider the

resistances shown in the Fig. 2.5. The resistance R;,

R, and R3, said to be in series.

5
V volts

Reg= Equivalent resistance of the circuit.
Req:R1+R2+R3

i.e. total or equivalent resistance of the series circuit is arithmetic sum of the resistances

Fig. 2.5 series circuit

connected in series.

For N resistances in series, R=R;+ R, + R3+ ...+ Ry (2.7)
If Rj_:Rg:‘ "t :RN:R,then
Req= NXR (2.8)
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2.5.1 Characteristics of Series Circuits

1) The same current flows through each resistance.

2) The supply voltage V is the sum of the individual voltage drops across the resistances.
V=V, +V,+ Vi+ ...+ Vy (2.9)

3) The equivalent resistance is equal to the sum of the individual resistances.

4) The equivalent resistance is the largest of all the individual resistances.

i.e. R>R;, R>R,, ... R>Ry

2.6 PARALLEL RESISTORS

The parallel circuit is one in which several resistances
are connected across one another in such a way that one
terminal of each is connected to form a junction point while

the remaining ends are also joined to form another junction

+ v -
=
1=

point. Consider a parallel circuit shown in the Fig. 2.6.

Req= Total or equivalent resistance of the circuit, Y
1

1 1 1 Fig. 2.6 A parallel circuit.
= —+—}—
Regq Ry Rz R3

In general if 'N' resistances are in parallel,

1 1 1 1 1
E= R_1+R_2+R_3+.“+a (2.10)
Note that Req is always smaller than the resistance of the smallest resistor in the parallel
combination. If R; =R, =- - - = Ry =R, then

Req =R/N (2.11)
Conductance (G):
It is known that, 1/R = G (conductance) hence,

G=G;+G,+Gs+...+Gy (2.12)
Important result:
Now If N = 2, two resistance are in parallel then,.

1 1 1 R1R
== —+—or R= —*=
RZ R1+R2

-y (2.13)

2.6.1 Characteristics of Parallel Circuits

1) The same potential difference gets across all the resistances in parallel.
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2) The total current gets divided into the number of paths equal to the number of resistances
in parallel. The total current is always sum of the individual currents.
3) The reciprocal of the equivalent resistance of a parallel circuit is equal to the sum of the
reciprocal of the individual resistances.
4) The equivalent resistance is the smallest of all the resistances R < R;, R<R,, R<Ry.
5) The equivalent conductance is the arithmetic addition of the individual conductances.
In general, it is often convenient and possible to combine resistors in series and
parallel and reduce a resistive network to a single equivalent resistance Req.
Example 2.3: Find Req for the circuit shown in Fig. 1.

4Q 1Q
O—WW—T— W\
To get Re,, We combine resistors in series and in parallel. The 6-Q % 220 T
B 250
and 3-Q resistors are in parallel, so their equivalent resistance is 3 3 T
80 360 :%SQ ‘
6Q(30=6X3/(6+3)=2Q o—ar— N
_ o o Figure 1
(The symbol || is used to indicate a parallel combination.) Also, the 40
o VMWW
1-Q and 5-Q resistors are in series; hence their equivalent J{ -
resistance is . 1 i Z60
320 [
10+50=6Q s 3
o—— W
Thus the circuit in Fig. 1 is reduced to that in Fig. 2(a). In Fig. (a)
2(a), we notice that the two 2-Q resistors are in series, so the 4Q
Oo—A\W
equivalent resistance is ]
a E. 3240
2Q0+2Q=4Q 8Q
i . . . . . . . o—A\W
This 4-Q resistor is now in parallel with the 6-Q resistor in Fig. 2 ®
(a); their equivalent resistance is
Figure 2

4Q1]60Q0=4X6/(4+6)=24Q
The circuit in Fig. 2 (a) is now replaced with that in Fig. 2 (b). In Fig. 2 (b), the three
resistors are in series. Hence, the equivalent resistance for the circuit is
Req=4Q+240+80=144Q
PRACTICE PROBLEM 2.2: By combining the resistors in Figure below, find Req.
Answer: 6 Q.

2Q 3Q 4Q
o—AWW J MW

Req

e Z6Q

40 =5Q
1Q [ T 30 |
oO— "\ ANV
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PRACTICE PROBLEM 2.3: Find the conductance G, for

the circuit in Figure below. 58

AW
. G,
Answer: 10 S. . éﬁs ssé 128
I

2.7 Short and Open Circuits |

[ AA—

In the network simplification, short circuit or open circuit existing in the network
plays an important role. Since the value of R can range from zero to infinity, it is important
that we consider the two extreme possible values of R.

2.7.1 Short Circuit

When any two points in a network are joined directly to each other with a thick
metalic conducting wire the two points are said to be short circuited. The resistance of such

short circuit is zero.

, " f"'"; The part of the network, which is short circuited, is shown in the
Thick ' 'm;“ Fig. 2.7. The points A and B are short circuited. The resistance
”‘:‘“m" Re20 Via*? E‘";f of the branch AB is Rsc=0. The Current Iz is flowing through
B - éﬁ:” the short circuited path. According to Ohm's law,
Oy

Vae= Ree X lag = 0 X 1ng=0V
Figure 2.7 Short circuit (R = 0) AB~ Nsc * 1AB AB

Key Point: The voltage across short circuit is always zero though current flows through the short
circuited path.

2.7.2 Open Circuit

When there is no connection between the two points of a network, having some

voltage across the two points then the two points are said to be open circuited.
As there is no direct connection in an open circuit, the
resistance of the open circuit is . The part of the network

which is open circuited is shown in the Fig. 2.8. The points A

and B are said to be open circuited. The resistance of the branch
. . . AB is ROC = o0 Q.
Figure 2.8 Open circuit (Roc =0).

According to Ohm's law,

loc= Vas/ Roc = Vag/ @ =0 A

Key Point: The current through open circuit is always zero though there exist voltage across

open circuited terminals.
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2.8 The Voltage-divider and Current-divider Circuits

2.8.1 The voltage-divider circuit

Voltage-divider circuit, shown in Fig.2.9. We
analyze this circuit by directly applying Ohm's law

and Kirchhoff's laws. To aid the analysis we

introduce the current i as shown in Fig.2.9 (b). From

Kirchhoff's current law R; and R,, carry the same _ S

Figure 2.9 (a) A voltage-divider circuit and (b)
current. App|y|ng Kirchhoff's V0|tage law around  The voltage-divider circuit with current i indicated
the closed loop yields
Now we can use Ohm's law to calculate v | and, v,:

Ry v; _ Ry

vy = m, Uy = R, + R, (2.14)
In general, if a voltage divider has N resistors (Ry, Ry, . . ., Ry) in series with the source
voltage vs, the Nth resistor (Ry) will have a voltage drop of
Ry v Ry v
vy = NRsS = N"s (2.15)
R1 + Ry +---+Ry Req
2.8.2 The current-divider circuit
The current-divider circuit shown in Fig. 2.10. The .
i
current divider is designed to divide the current is between
i /2o Ry ii"

R; and R,. We find the relationship between the current i,

-

Figure2.10 the current-divider circuit.

and the current in each resistor (that is, i, and i,) by directly
applying Ohm's law and Kirchhoff's current law. The

voltage across the parallel resistors is

V= Ry R, = — 2
LA G LS Rl + RZ S
. Ry i . Ry ig
= — = — 2.16
ll R1 +R> ’ 2 R1 + Ry ( )
If we divide both the numerator and denominator by R;R», Eq. (2.16) become
. Gq ig . Gy i
— J1°s = —%5 2.17
ll G1 + Gy ’ lz G1 + Gy ( )
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Thus, in general, if a current divider has N conductors (G, G2, . . ., Gy) in parallel
with the source current i, the nth conductor (Gy) will have current

. Gy i Reg i
iy = Nos = —1= (2.18)
Gq1 + Go+---+Gy Ry

EXAMPLE 2.4: Find i, and v, in the circuit shown in Fig. 1(a). Calculate the power

dissipated in the 3-Q resistor. 1 40 4

AW\

=

a
Solution: The 6-Q and 3-Q resistors are in parallel, so their l g
combined resistance is 12V Tm %230
b

6Q3Q=6X3/(6+3)=20Q

By apply voltage division, since the 12 V in Fig. 1(b) is @
divided between the 4-Q and 2-Q resistors. Hence, A ;V 3 a
Vo =2(12V)/(2+4) =4V +]
12V % 3 2Q
Apply current division to the circuit in Fig. 1(a) now that we ‘T
know i, by writing b

i=12/4+2=2A ®
i,=6i/(6+3)=4/3A

The power dissipated in the 3-CQ resistor is
Po = Vo ip = 4(4/3) =5.333 W

Figure 1(a) Original circuit,
(b) Its equivalent circuit.

PRACTICE PROBLEM 2.4: Find v, and v, in the circuit shown in Figure below. Also
calculate i; and i, and the power dissipated in the 12-Q and 40-Q resistors.

Answer: v; =5V, iy =416.7 mA, p; =2.083 W, v, =10 V, i, = 250 mA, p, = 2.5 W.
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2.9 WYE-DELTA TRANSFORMATIONS R

AW
Situations often arise in circuit analysis when the % A R
2 3

. . . . . < “1
resistors are neither in parallel nor in series. For example, /W R. ‘1\
V,. \1' AN

consider the bridge circuit in Fig. 2.11. How do we combine /
TR

resistors R, through Rg when the resistors are neither in series R; 7

nor in parallel? Many circuits of the type shown in Fig. 2.11

can be simplified by using three-terminal equivalent networks. ~Figure 2.11The bridge network.

These are the wye (YY) or tee (T) network shown in Fig. 2.12 and R.
1 AN 3
the delta (A) or pi («) network shown in Fig. 2.13.
Ry R,
1 —3
R’y Ry
(@)
4 R,
Ry s 1 AMAA 3
2 4 2 4
Ry R,
() ()
2 4
Figure 2.12 Two forms of the same network: (a) Y, (b) T. ®)

Figure 2.13 Two forms of the

Delta to Wye Conversion same network: (a) A, (b) .

Suppose it is more convenient to work with a wye network in a place where the
circuit contains a delta configuration. We superimpose a wye network on the existing delta
network and find the equivalent resistances in the wye network. For terminals 1 and 2 in
Figs. 2.12 and 2.13, for example, R;5(Y) =R1+R3, Ry (A) =Ry || (Ra + Re) (2.19)
Setting R1»(Y) = Ry, (A) gives

Rp(Ra + R¢
i = L o Ly = R:(-I-Rb+R)c
_ _ Rc(Ra"'Rb) _ _ Ra(Rb+Rc)
By solving previous equations, we get
Rp R
R, = — b (2.21)
Rc.R
R, = ——— (2.22)
RaR
R; = —2— (2.23)
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Wye to Delta Conversion

Reversing the A-to-Y transformation also is possible. That is, we can start with the Y
structure and replace it with an equivalent A structure. The expressions for the three A-

connected resistors as functions of the three Y-connected resistors are
R1R2 + R2R3 + R3R1

Ra = (2.24)
R1

Rb = R1R2 + R2R3 + R3R1 (2.25)
R2

Rc = R1R2 + Ril;B + R3R1 (2.26)

The Y and A networks are said to be balanced when

Ri=R;=R3=Ry,Ra=Rp =R =Ry (2.27)
Under these conditions, conversion formulas become
RY :RA/ 3o0r RA = 3RY (228)

EXAMPLE 2.5: Obtain the equivalent resistance Ry, for the circuit in Fig. 1 and use it_to

find current i.

i
. — 8 a
Solution: o
In this circuit, there are two Y-networks and one A- 1z.sn§§ % 100

network. Transforming just one of these will simplify the

> n

.

- N ov(E  cfww—a 330
circuit. If we convert the Y-network comprising the 5-Q, 10- 1

: 3 2200
Q, and 20-Q resistors, we may select sag $
R1=IOQ, R2=20Q, R3=5Q g b
Thus, from Eqgs. (2.24) to (2.26) we have Figure 1.
Ra — RIRZ+RZR3+R3R1 _ 10x20+20x5+45x10 _ 350 _ ,p
R1 10 10
Rb — RIRZ+RZR3+R3RL _ 350 _ .
R2 20
Rc — RIRZ+RZR3+R3RL _ 350 _ 0
R3 5

With the Y converted to A, the equivalent circuit (with the voltage source removed for
now) is shown in Fig. 2 (a). Combining the three pairs of resistors in parallel, we obtain
70| 30 =70 X 30/ (70 +30) =21 Q
125 17.5=125 X 17.5/ (12.5 +17.5) =7.2917 Q
15 || 35 =15 X 35/ (15 + 35) = 10.5 Q
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so that the equivalent circuit is shown in Fig. 2 (b). Hence, we find
Rap = (7.292 + 10.5) || 21 =17.792 X 21/ (17.792 + 21) = 9.632 Q

Then
i =vs/ Rab =120/ 9.632 = 12.458 A

ao
ua 1750 | i .o
gma Zua $ima |
1o 3sQ ]= g;z:o
1050
bo bo
@) ®)

Figure 2 Equivalent circuits to Fig. 1, with the voltage removed.

PRACTICE PROBLEM 2.5: For the bridge network in Figure below, find R, and i.

Answer: 40 Q, 2.5 A — ;’,_1:? I |
403 ) 100

100V @ ]-—»2;.3—]
100 i’ 2500

|

2.10 Energy Sources b

There are basically two types of energy sources; voltage source and current source.
These sources are classified as i) Ideal source and ii) Practical source. Let us see the

difference between Ideal and practical sources.

2.10.1 VVoltage Source

*|deal voltage source:

Ideal voltage source is defined as the energy source which gives constant voltage
across its terminals irrespective of the current drawn through its terminals. This is indicated
by V- | characteristics shown in the Fig. 2.14 (b).

*Practical voltage source:

But practically, every voltage source has small internal resistance shown in series with
voltage source and is represented by R as shown in the Fig. 2.15. Because of the Ry, Vvoltage
across terminals decreases slightly with increase in current and it is given by expression,

Vi =Vs-I. R
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Internal

resistance Rse I Vi

(a) symbol (b) characteristics (a) circuit (b) characteristics
Figure 2.14 1deal voltage source. Figure 2.15 Practical voltage source.

Voltage sources are further classified as follows,
i) Time invariant Sources:

The sources in which voltage is not varying with time are known as time invariant
voltage source or D.C. sources. These are denoted by capital letters. Such a source is
represented in the Fig. 2.16 (a).

i1) Time Variant Source:

The sources in which voltage is varying with time are known as time variant voltage sources

or A.C. sources. These are denoted by small letters. This is shown in the Fig. 2.16 (b).

—C ———O . -0
+
g YT v(t)
o L—— o o
Figure 2.16 (a) D.C. sources. Figure 2.16(b) A.C. source.

2.10.2 Current Source

*|deal current source:

Ideal current source is the source which gives constant current at its terminals
irrespective of the voltage appearing across its terminal. This is explained by V-I
characteristics shown in the Fig. 2.17 (b).

*Practical current source:

But practically, every current source has high internal resistance, shown in parallel
with current source and It is represented by Rg,. This is shown in the Fig. 2.18. Because of

Rsh, current through its terminals decreases slightly with voltage at its terminals.
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Intemal
I resistance I
[ro———C) 1‘ \ o + k
I =1 Ideal
! lin
@ ’ g \ ow [0
L Practical
v Ran
5 0 L o o 0 VL
(a) symbol (b) characteristics (@) circuit  (b) characteristics
Figure 2.17 ideal current source. Figure 2.18 ideal current source.

Similar to voltage sources, current sources are classified as follows,

i) Time Invariant Sources:

The sources in which current is not varying with time are known as time invariant
current sources or D.C. sources. These are denoted by capital letters. Such a current source
is represented in the Fig. 2.19 (a).

i1) Time Variant Sources:

The sources in which current is varying with time are known as time variant current
sources or A.C. sources. These are denoted by small letters. Such source is represented in
the Fig. 2.19 (b). o

a b )
Figure 2.19 (a) D.C. source. Fig. 2.19 (b) A.C. source.

The sources, which are discussed above are independent sources because these sources does
not depend on other voltage or currents in the network for their value. These are represented
by a circle with a polarity of voltage or direction of current indicated inside

2.10.3 Dependent Sources

Dependent source are those whose value of source depends on voltage or current in the
circuit. Such sources are indicated by diamond as shown in the Fig. 2.20 and further
classified as,

i) Voltage-Controlled Voltage Source (VCVS): It produces a voltage as a function of
voltage elsewhere in the given circuit. It is shown in the Fig. 2.20 (a). The controlling
voltage is named v, the equation that determines the supplied voltage v; is

Vs = MU Vg, and the reference polarity for v is as indicated. Note that p is a

multiplying constant that is dimensionless.
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i) Current-Controlled Voltage Source (CCVS): It produces voltage as a function of
current elsewhere in the given circuit. It is shown In the Fig. 2.20(b). the controlling current
IS iy the equation for the supplied voltage vs is Vs = p iy,

the reference polarity is as shown and the multiplying constant p has the dimension volts per
ampere

iii) Voltage-Controlled Current Source (VCCS): It produces current as a function of
voltage elsewhere in the given circuit. It is shown in the Fig. 2.20(c). The controlling
voltage is vy, the equation for the supplied current is IS I =a Vy,

the reference direction is as shown and the multiplying constant o has the dimension
amperes per volt.

iv) Current-Controlled Current Source (CCCS): It produces current as a function of
current elsewhere in the given circuit. It is shown in the Fig. 2.20 (d). the controlling current
IS iy the equation for the supplied current i is i = iy,

the reference direction is as shown, and the multiplying constant £ is dimensionless.

. a2
U, = vy ¥ T P <_> i, = av, <T> iy = Pi,

(a) (b) (©) (d)

Figure 2.20 The circuit symbols a) an ideal dependent voltage-controlled voltage source, (b) an ideal dependent
current-controlled voltages source, (¢) an ideal dependent voltage-controlled current source (d) an ideal
dependent current-controlled current source.

Dependent sources are useful in modeling elements such as transistors, operational
amplifiers and integrated circuits. An example of a current controlled voltage source is
shown on the right-hand side of Fig. 2.21, where the voltage 10i of the voltage source

depends on the current i through element C.

Figure 2.21 the source on the right-hand side is a current-controlled voltage source.
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2.11 Combinations of Sources

In a network consisting of many sources, series and parallel combinations of sources
exist. If such combinations are replaced by the equivalent source then the network
simplification becomes much easier. Let us consider such series and parallel combinations
of energy sources.

2.11.1 Voltage Sources in Series

If two voltage sources are in series then the equivalent is dependent on the polarities of the

two sources. Consider the two sources as shown in the Fig. 2.22.

—O 0 ————O

%o o e
Va-Vy

= +V. o = = =
Vi*Vy 1 :) Vi—V, = <+

V2 9 Vv, 6 (Vi>V2) V, e 2=

——a o L —

Figure 2.22 Figure 2.23

If the polarities of the two sources are same then the equivalent single source is the addition

of the two sources with polarities same as that of the two sources.
Consider the two sources as shown in the Fig. 2.23. If the polarities of the two sources are
different then the equivalent single source is the difference between the two voltage sources.

The polarity of such source is same as that of the greater of the two sources.

Key Point: the voltage sources to be connected in series must have same current
rating through their voltage ratings may be same or different.

2.11.2 VVoltage Sources in Parallel

Consider the two voltage source in parallel as shown in
the Fig. 2.24. The equivalent single source has a value

same as V| andV,. It must be noted that all the open

circuit voltage provided by each source must be equal as

the sources are in parallel. Figure 2.24

Key Point: the voltage sources to be connected in parallel must have same voltage rating through
their current ratings may be same or different.

2.11.3 Current Sources in Series

Consider the two current sources in series is shown in the Fig. 2.25, the equivalent single

source has a value same as I; and 1.
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—

) =1

. &

l
o

Figure 2.25

Key Point: the current sources to be connected in series must have same current rating through
their voltage ratings may be same or different.

2.11.4 Current Sources in Parallel

Consider the two current sources in parallel as shown in the Fig. 2.26.

w® O = O I'(> ()" = (D(:::]li) "() ()IZ = ();a‘ul
Figure 2.27
Figure 2.26

if the directions of the currents of the sources connected in parallel are same then the
equivalent single source is the addition of the two sources with direction same as that of the
two sources.

Consider the two current sources with opposite directions connected in parallel as shown in
the Fig. 2.27. If the directions of the two sources are different then the equivalent single
source has a direction same as greater of the two sources with value equal to the difference

between the two voltage sources.

Key Point: the current sources to be connected in parallel must have same voltage rating through
their current ratings may be same or different.

2.12 NOTATION: it will play an increasingly important role in the analysis.

1) Double-Subscript Notation

The fact that voltage is an across variable and exists between two points has resulted
in a double-subscript notation that defines the first subscript as the higher potential. In Fig.
2.28(a), the two points that define the voltage across the resistor R are denoted by a and b.
Since a is the first subscript for Vg, point a must have a higher potential than point b if Vg,
is to have a positive value. If, in fact, point b is at a higher potential than point a, Vg, will

have a negative value, as indicated in Fig. 2.28(b).
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+ - +
—o—MW—9— ——W——
= a R a R b T

Vas = ) Vap = 5
(@ (®)

Figure 2.28 defining the sign for double-subscript notation.
In summary:

The voltage Vg, is the voltage at point a with respect to (w.r.t.) point b.

11)_Single-Subscript Notation

If point b of the notation Vg, is specified as ground potential (zero volts), then a
single subscript notation can be employed that provides the voltage at a point with respect to
ground.

In Fig. 2.29, V, is the voltage from point a to
ground. In this case it is obviously 10 V since it is

E= 10V—d right across the source voltage E. The voltage V,, is

the voltage from point b to ground. Because it is

directly across the 4-Q resistor, V, =4 V.

Figure 2.29 defining the use of single-subscript
notation for voltage levels.

In summary:

The single-subscript notation Va specifies the voltage at point a with respect to ground (zero
volts). If the voltage is less than zero volts, a negative sign must be associated with the magnitude
of Va.

General Comments

A particularly useful relationship can now be established that will have extensive
applications in the analysis of electronic circuits. For the above notational standards, the
following relationship exists:

Vap = Va-Vp (2.29)
In other words, if the voltage at points a and b is known with respect to ground, then the
voltage Vg, can be determined using Eq. (2.29). In Fig. 2.29, for example,

Voo =V,-Vpy=10V-4V =6V

2.13 KIRCHHOFF'S LAWS

Ohm’s law by itself is not sufficient to analyze circuits. However, when it is coupled

with Kirchhoff’s two laws, we have a sufficient, powerful set of tools for analyzing a large
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variety of electric circuits. Kirchhoff’s laws were first introduced in 1847 by the German
physicist Gustav Robert Kirchhoff (1824-1887). These laws are formally known as
Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL).

2.13.1 Kirchhoff’s current law

Kirchhoff’s current law (KCL) states that the algebraic sum of currents entering a
node (or a closed boundary) is zero or the sum of the currents entering a node is equal to
the sum of the currents leaving the node.
Mathematically, KCL implies that
N =0 (2.30)

where N is the number of branches connected to the node and i, is the nth current entering
(or leaving) the node.
Consider the node in Fig. 2.30. Applying KCL gives

Iy + (<) + iz + g+ (7i5) =0 (2.31)
since currents iy, i3, and i, are entering the node, while currents i, and is are leaving it. By
rearranging the terms, we get

i]_ + i3 + i4 = iz + i5 (232)

Figure 2.30 Currents at a node illustrating KCL.

A simple application of KCL is combining current
Ir

sources in parallel. The combined current is the algebraic . &

sum of the current supplied by the individual sources. For +;1 +13 +;3
example, the current sources shown in Fig. 2.31(a) can be ¢

(a)

combined as in Fig. 2.31(b). The combined or equivalent I

-

current source can be found by applying KCL to node a. a :3
Ik=hL-5L+1L

IT + |2 = |1 + |3
or "
Figure 2.31 Current sources in parallel:

(a) original circuit, (b) equivalent circuit.

IT:|1_|2+|3
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A circuit cannot contain two different currents, 1, and I, in series, unless I, = I,; otherwise
KCL will be violated.

2.13.2 Kirchhoff’s voltage law

Kirchhoff’s second law is based on the principle of conservation of energy:
Kirchhoff’s voltage law (KVL) states that the algebraic sum of all voltages around a
closed path (or loop) is zero.
Expressed mathematically, KVL states that

M v,=0 (2.33)
Where M is the number of voltages in the loop (or the number of branches in the loop) and
Vp, IS the mth voltage.

To illustrate KVL, consider the circuit in Fig. 2.32. The sign on each voltage is the
polarity of the terminal encountered first as we travel around the loop. We can start with any
branch and go around the loop either clockwise or counterclockwise. Suppose we start with
the voltage source and go clockwise around the loop as shown; then voltages would be -v,,
+V,, +V3, —Vy4, and +vs, in that order. For example, as we reach branch 3, the positive
terminal is met first; hence we have+vs. For branch 4, we reach the negative terminal first;
hence, —v,4. Thus, KVL vyields

—Vi+Vo+V3— Vs +V5=0 (2.34)
Rearranging terms gives

Vo+Va+ V5=V +V, (2.35)
which may be interpreted as

Sum of voltage drops = Sum of voltage rises (2.36)

This is an alternative form of KVL. Notice that if we had

v "

- - . -

traveled counterclockwise, the result would have been +v;, AMA ANAA

LA

—Vs, +Vy, — nd — hich is the sam for
Vs, +V4, —V3, and —V,, which is the same as before, except " . q . .
that the signs are reversed. Hence, Egs. (2.34) and (2.35)

remain the same. -+

When voltage sources are connected in series, KVL can be _ ) -
Figure 2.32 A single-loop circuit

applied to obtain the total voltage. The combined voltage is illustrating KVL.

the algebraic sum of the voltages of the individual sources.
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2.13.3 Steps to Apply Kirchhoff. Laws to Get Network Equations
The steps are stated based on the branch current method.

Step 1: Draw the circuit diagram from the given information and insert all the value of
sources with appropriate polarities and all the resistances.

Step 2: Mark all the branch currents with assumed directions using KCL at various nodes
and junction points. Kept the number of unknown currents as minimum as far as possible to
limit the mathematical calculations required to solve them later on. Assumed directions may
be wrong; in such case answer of such current will be mathematically negative which
indicates the correct direction of the current.

Step 3: Mark all the polarities of voltage drops and rises as per directions of the assumed
branch currents flowing through various branch resistance of the network. This is necessary
for application of KVL to various closed loops.

Step 4: Apply KVL to different closed paths in the network and obtain the corresponding
equations. Each equation must contain some element which is not considered in any

preview equation.

2.14 Solving Simultaneous Eguations and Cramer's Rule

Electric circuit analysis with the help of Kirchhoff’s laws usually involves solution of
two or three simultaneous equations. These equations can be solved by a systematic
elimination of the variables but the procedure is often lengthy and laborious and hence more
liable to error. Determinants and Cramer’s rule provide a simple and straight method for
solving network equations through manipulation of their coefficients. Of course, if the
number of simultaneous equations happens to be very large, use of a digital computer can

make the task easy. Let us assume that set of simultaneous equations obtained is, as

follows,
A X1 Ao XoFeeeeeeeceenes + ai, X=C4
Aoy X1+ Qoo Xoteeeeeeenennne + ), X,=C,
an]_ X1+ an2 X2+ oooooooooooo + ann Xn_ Cn
where C;, Cy, ......... , C,, constants. Then Cramer's rule says that form a system

determinant A or D as,
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aiq ag A1n
a a2 a

A= 21 : Z I )
Ay An2 Ann

Then obtain the subdeterminant Dj by replacing j™ column of A by the column of

constants existing on right hand side of equations i.e. C, C,, .... Cy;
€y as; A1n a;; Cy A1n
D, = C. az:z a, | D, = azqy C? ax,
Cn Quz - @y Cn -
a1 Q12 Cq
and p,=| %2t 92 C2
An1 anzl Cn
The unknowns of the equations are given by Cramer's rule as,
Where Dy, D, ..., D, and D are values of the respective determents

Example 2.6: Apply Kirchhoff's laws to the circuit shown in figure 1 below Indicate the

various branch currents.
15Q

—AWWW—T—WW

300

Write down the equations relating the various branch currents.

Solve these equations to find the values of these currents.

+* . +
: : sov —/—  20Q <
Is the sign of any of the calculated currents negative? 3 s
If yes, explain the significance of the negative sign.
Solution: Application Kirchhoff's laws: Figure 1

Step land 2: Draw the circuit with all the values which are same as the given network.

Mark all the branch currents starting from +ve of any of the source, say +ve of 50 V source

Step 3: Mark all the polarities for different voltages across the resistance. This is combined with

step 2 shown in the network below in Fig. 1 (a).

15Q 1,

L=

Figure 1 (a)
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Step 4: Apply KVL to different loops.
Loop 1: A-B-E-F-A, -151,-201,+50=0
Loop 2: B-C-D-E-D, -30(l;-1,)-100+201,=0

Rewriting all the equations, taking constants on one side,

151, +20 1, =50, =301, +50 1, =100
Apply Cramer'srule, D = _1350 §8 = 1350
Calculating Dy, D, = 15000 gg =500
—D1_ 500 _
Ii="2=--=0374
Calculating D,, D, = _1350 15000 = 3000
L,=2=30_2224
D 1350

For I, and I, as answer is positive, assumed direction is correct.

For I, answer is 0.37 A. For I, answer is 2.22 A
I,-1,=0.37-222=-185A

Negative sign indicates assumed direction is wrong.

i.e. Iy — 1, =1.85 A flowing in opposite direction to that of the assumed direction.

Practice problem 2 .6: Find the currents and voltages in the circuit shown below.

Answer:v; =3V, v, =2V, vs=5V,i;=15A, i,= +.25 A, i; =1.25 A,

5V nZ8Q @:v

2.15 SOURCE TRANSFORMATION

We have noticed that series-parallel combination and wye-delta transformation help
simplify circuits. Source transformation is another tool for simplifying circuits. We can
substitute a voltage source in series with a resistor for a current source in parallel with a

resistor, or vice versa, as shown in Fig. 2.33. Either substitution is known as a source

transformation.
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MW O a é 0 a

| 1
0 b 0 b

Figure 2.33 Transformation of independent sources.

Key Point: A source transformation is the process of replacing a voltage source vs in
series with a resistor R by a current source is in parallel with a resistor R, or vice versa.

We need to find the relationship between v, and is that guarantees the two
configurations in Fig. 2.33 are equivalent with respect to nodes a, b.
Suppose Ry, is connected between nodes a, b in Fig.2.33(a). Using Ohms law, the current
in R is.

Vs

i = G R and R in series (2.37)

If it is to be replaced by a current source then load current must be RERD
L

Now suppose the same resistor R, is connected between nodes a, b in Fig. 4.4 (b).

Using current division, the currentin Ry, is

. _ . R
i =i e (2.38)

If the two circuits in Fig. 4.4 are equivalent, these resistor currents must be the same.

Equating the right-hand sides of Eqs.4.5 and 4.6 and simplifying

i =2 or v, = i;R (2.39)

Source transformation also applies to dependent sources, provided we carefully handle the
dependent variable.As shown inFig.2.34, a dependent voltage source in series with a resistor

can be transformed to a dependent current source in parallel with the resistor or vice versa.

R

—A A AN —
V'.'n' vV

0 b O b

Figure 2.34 Transformation of dependent sources.

However, we should keep the following points in mind when dealing with source

transformation.
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1. Note from Fig. 2.33 (or Fig. 2.34) that the arrow of the current source is directed toward
the positive terminal of the voltage source.
2. Note from Eq. (2.39) that source transformation is not possible when R = 0, which is the

case with an ideal voltage source. However, for a practical, nonideal voltage source, R # 0.

Similarly, an ideal current source with R =cocannot be replaced by a finite voltage source.

Example 2.7: Use source transformation to find v, in the circuit in Fig. 2.35.

Solution:

We first transform the current and voltage sources to obtain the circuit in Fig. 2.37(a).
Combining the 4-Q and 2-Q resistors in series and transforming the 12-V voltage source
gives us Fig. 2.37(b). We now combine the 3-Q and 6-Q resistors in parallel to get 2-Q. We
also combine the 2-A and 4-A current sources to get a 2-A source. Thus, by repeatedly

applying source transformations, we obtain the circuit inFig.2.37 (c).

T
80% v,
]

iQ  2Q
2Q iQ

AWV ANV
12\';
AN L
40% 3A 802y, 12V 2A 59% mfii, «l?sn 4A
] - I

: ® ©
Figure 2.36 Figure 2.3/

Alternatively, since the 8-Q and 2-Q resistors in Fig. 2.37(c) are in parallel, they have the

same voltage vo across them. Hence,

Vo = (8]|2)(2 A) = % (2)=32V
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CHAPTER THREE
METHODS OF ANALYSIS

3.1 INTRODUCTION

Having understood the fundamental laws of circuit theory (Ohm’s law and
Kirchhoff’s laws), we are now prepared to apply these laws to develop two powerful
techniques for circuit analysis: nodal analysis, which is based on a systematic application of
Kirchhoff’s current law (KCL), and mesh analysis, which is based on a systematic
application of Kirchhoff’s voltage law (KVL). The two techniques are so important that this

chapter should be regarded as the most important in the lectures.

3.2 NODAL ANALYSIS

Nodal analysis provides a general procedure for analyzing circuits using node

voltages as the circuit variables. Choosing node voltages instead of element voltages as
circuit variables is convenient and reduces the number of equations one must solve
simultaneously. To simplify matters, we shall assume in this section that circuits do not
contain voltage sources. Circuits that contain voltage sources will be analyzed in the next

section.

Steps to Determine Node Voltages:

1. Select a node as the reference node. Assign voltages vi, Va,. . Vh1 to the remaining n-1
nodes. The voltages are referenced with respect to the reference node.

2. Apply KCL to each of the n-1 nonreference nodes. Use Ohm’s law to express the branch
currents in terms of node voltages.

3. Solve the resulting simultaneous equations to obtain the unknown node voltages.

We shall now explain and apply these three steps.

The first step in nodal analysis is selecting a node as the reference or datum node. The
reference node is commonly called the ground since it is assumed to have zero potential. A
reference node is indicated by any of the three symbols in Fig. 3.1. We shall always use the
symbol in Fig. 3.1(b). Once we have selected a reference node, we assign voltage
designations to nonreference nodes. Consider, for example, the circuit in Fig. 3.2(a). Node 0

is the reference node (v = 0), while nodes 1 and 2 are assigned voltages v; and vy,

CHAPTER THREE METHODS OF ANALYSIS
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respectively. Keep in mind that the node voltages are defined with respect to the reference
node. As illustrated in Fig. 3.2(a), each node voltage is the voltage with respect to the
reference node.

The number of nonreference nodes is equal to
the number of independent equations that we
will derive.

Lo

(a) ®) ©

i L
1 Ry 2 n —125 R —li 1)
MWW AW -
+ + ‘il >‘i3
i@ 1En wEn i@ Fn in
0
(@ ®

Figure 3.2 Typical circuits for nodal analysis.

As the second step, we apply KCL to each nonreference node in the circuit. To avoid
putting too much information on the same circuit, the circuit in Fig. 3.2(a) is redrawn in
Fig. 3.2(b), where we now add iy, i,, and i; as the currents through resistors Ry, R,, and R;,

respectively. At node 1, applying KCL gives

|1: |2+ i1+ i2 (31)
At node 2,
|2 + i2 = i3 (32)

We now apply Ohm’s law to express the unknown currents iy, ip, and is in terms of
node voltages.
Current flows from a higher potential to a lower potential in a resistor.
We can express this principle as

i = VhigherR‘Vlower (33)

Note that this principle is in agreement with the way we defined resistance in Chapter 2 (see
Fig. 2.3). With this in mind, we obtain from Fig. 3.2(b),

CHAPTER THREE METHODS OF ANALYSIS
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I, = %,
i3 = sz;o , (3.4)
Substituting Eq. (3.4) in Egs. (3.1) and (3.2) results, respectively, in
I, =1, + ‘;—11+% (3.5)
12+v1—;—22=;—z (3.6)

In terms of the conductances, Egs. (3.5) and (3.6) become

1 =1+ Gyvi + Gy (Vi — Vo) (3.7)

I2 + Gz (Vi — V) = Gavs (3.8)

The third step in nodal analysis is to solve for the node voltages. If we apply KCL to

n—1 nonreference nodes, we obtain n—1 simultaneous equations such as Eqgs. (3.5) and (3.6)
or (3.7) and (3.8). For the circuit of Fig. 3.2, we solve Egs. (3.5) and (3.6) or (3.7) and (3.8)
to obtain the node voltages v, and v, using any standard method, such as the substitution
method, the elimination method, Cramer’s rule, or matrix inversion. To use either of the last
two methods, one must cast the simultaneous equations in matrix form. For example, EQs.
(3.7) and (3.8) can be cast in matrix form as

M el =[] ®9)
which can be solved to get v; and v;.

Example 3.1: Calculate the node voltages in the circuit shown in Fig. 3.3(a).

Solution:

Consider Fig. 3.3(b), where the circuit in Fig. 3.3(a) has been prepared for nodal
analysis. Notice how the currents are selected for the application of KCL. Except for the
branches with current sources, the labeling of the currents is arbitrary but consistent. (By
consistent, we mean that if, for example, we assume that i2 enters the 4_resistor from the
left-hand side, i2 must leave the resistor from the right-hand side.) The reference node is

selected, and the node voltages v1 and v2 are now to be determined.

CHAPTER THREE METHODS OF ANALYSIS
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Figure 3.3 For Example 3.1: (a) original
circuit, (b) circuit for analysis

; At node 1, applying KCL and Ohm’s law gives
1o ) i1:i2+i3:> 5 =v1—v2 v12—0
1 AN =
L , Multiplying each term in the last equation by 4, we obtain
2Q 6Q g 10A PyIng g y
20:V1_V2+ 2V1
= or
(a)
SA 3V1_V2 - 20 (311)
Tims biyms At node 2, we do the same thing and get
n=
Boaa | 421 iy + iy = ig + is = +10=75+2=2
n ’WV‘._’
1 B! Multiplying each term by 12 results in
g saz  @a 3v; — 3v= + 120 = 60 + 2v,
or
® ) —3v; + 5v, =60 (3.1.2)

Now we have two simultaneous Egs. (3.1.1) and (3.1.2). We can solve the equations

using any method and obtain the values of v1 and v2.

METHOD 1: Using the elimination technique, we add Egs. (3.1.1) and (3.1.2).

4v,=80=>v, =20V
Substituting v, = 20 in Eq. (3.1.1) gives
3v; —20=20 = v, =40/3=13.33 V

METHOD 2: To use Cramer’s rule, we need to put Eqgs. (3.1.1) and (3.1.2) in matrix form

as
| M
The determinant of the matrix is
a=p=|3 J=15-3-12

We now obtain v; and v, as

20 -1

(3.1.3)

D 100+60
v, =—=-9 5|= =13.33V

D D 12

D 3 2 180+60

— +
772 = —2 = 3 60 = = ZOV

D D 12

CHAPTER THREE

METHODS OF ANALYSIS
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If we need the currents, we can easily calculate them from the values of the nodal voltages.

i1:5A,i2 =

1% Bl % (%1 V2

P2 = —1.6667A4,i; =2 = 6.6664,i,=10A, is =2 = 3.3334

The fact that i, is negative shows that the current flows in the direction opposite to the one
assumed.

Practice problem 3.1: Find the voltages at the three nonreference nodes in the circuit of

Figure below. 2Q

AN
Answer:v; =80V, v,=-64V,v;=156 V. 30 -
E— 1 AN T ),

%40
-4

i,

3

-

IOA. §6Q

3.2.1 NODAL ANALYSIS WITH VOLTAGE SOURCES

We now consider how voltage sources affect nodal analysis. We use the circuit in Fig.

3.4 for illustration. Consider the following two possibilities.
CASE 1: If a voltage source is connected between the reference node and a nonreference
node, we simply set the voltage at the nonreference node equal to the voltage of the voltage
source. In Fig. 3.4, for example,

v, =10V (3.10)

Thus our analysis is somewhat simplified by this knowledge of the voltage at this node.

10
A % Supemode
4R
2 - SV T
" AMa— 2 &> i
i {is
10v @ Zso s

Figure 3.4 A circuit with a supernode.

CASE 2: If the voltage source (dependent or independent) is connected between two
nonreference nodes, the two nonreference nodes form a generalized node or supernode; we
apply both KCL and KVL to determine the node voltages.

A supernode is formed by enclosing a (dependent or independent) voltage source connected

between two nonreference nodes and any elements connected in parallel with it.

CHAPTER THREE METHODS OF ANALYSIS
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In Fig. 3.4, nodes 2 and 3 form a supernode. (We could have more than two nodes
forming a single supernode. For example, see the circuit in the Practice problem 3.4). We
analyze a circuit with supernodes using the same three steps mentioned in the previous
section except that the supernodes are treated differently. Why? Because an essential
component of nodal analysis is applying KCL, which requires knowing the current through
each element. There is no way of knowing the current through a voltage source in advance.
However, KCL must be satisfied at a supernode like any other node. Hence, at the
supernode in Fig. 3.5,

iy +ig =iy + i3 (3.11a)

vl —v2 vl —v3 v2-0 v3-0
or St =% T (3.11b)

To apply Kirchhoff’s voltage law to the supernode in Fig. 3.4, we redraw the circuit as
shown in Fig. 3.5. Going around the loop in the clockwise direction gives
—V,+5+Vv;=0=Vv,—Vv3=5 (3.12)
From Eqs. (3.10), (3.11b), and (3.12), we obtain the node voltages.

Figure 3.5 Applying KVL to a supernode.

Example 3.2: For the circuit shown in Fig. 3.6, find the node voltages.

Solution:
The supernode contains the 2-V source, nodes 1 and
}vg;fnl, 2, and the 10-Q resistor. Applying KCL to the
. 2V . supernode as shown in Fig. 3.7(a) gives

. 2:i1+i2+7

’A . g} 10 4Q§ . ;4 Expressing i and iy in terms of the node voltages

vl-0 v2-0
+
2 4

2 = + 7

= or

Figure 3.6 For Example 3.2. Vo =—20—2v; (3.2.1)

CHAPTER THREE METHODS OF ANALYSIS _
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To get the relationship between v; and v,, we apply KVL to the circuit in Fig. 3.7(b).
Going around the loop, we obtain
“V{—2+V,=0 2 Vv, =Vv;+2 (3.3.2)
From Eqs. (3.2.1) and (3.2.2), we write
Vo=V, +2=-20—-2v;
or
vy =—22 =v;=-7.333V
and v, = v; +2 = —5.333 V. Note that the 10-Q resistor does not make any difference

because it is connected across the supernode.

1n o un Ly

—_— l' ‘i_- 1: P 12
=) e
" = 5 ) < 7 | H 1 |
24 @ g0 40z @+ | |
()
' | | :
4 S Ay B

€)) (b)

Figure 3.7 Applying: (a) KCL to the supernode, (b) KVL to the loop.

Practice problem 3.2: Find v and i in the circuit in Figure below.
Answer: -0.2V, 14 A. 3V

7v. 3n§v 20 §6Q

3.3 MESH ANALYSIS

Mesh analysis provides another general procedure for analyzing circuits, using mesh

currents as the circuit variables. Using mesh currents instead of element currents as circuit
variables is convenient and reduces the number of equations that must be solved
simultaneously. Recall that a loop is a closed path with no node passed more than once. A
mesh is a loop that does not contain any other loop within it.

Nodal analysis applies KCL to find unknown voltages in a given circuit, while mesh
analysis applies KVL to find unknown currents. Mesh analysis is not quite as general as

nodal analysis because it is only applicable to a circuit that is planar. A planar circuit is one

CHAPTER THREE METHODS OF ANALYSIS
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that can be drawn in a plane with no branches crossing one another; otherwise it is
nonplanar. A circuit may have crossing branches and still be planar if it can be redrawn
such that it has no crossing branches. For example, the circuit in Fig. 3.8 (a) has two
crossing branches, but it can be redrawn as in Fig. 3.8 (b). Hence, the circuit in Fig. 3.8 (a)
is planar. However, the circuit in Fig. 3.9 is nonplanar, because there is no way to redraw it
and avoid the branches crossing. Nonplanar circuits can be handled using nodal analysis,

but they will not be considered in this text.

1A
1A
2Q
. 4 - < <
1032592 623339 103 303
Y 9 9 4Q 1
L\ se /] 503 60
. \ YWV / < il L
®)

1Q
AN
5Q
o =k 70 320
M 3Q
130 Y
SA‘ <3129 . §9Q L
AN~
100

Figure 3.9 A nonplanar circuit.

To understand mesh analysis, we should first explain more about what we mean by a mesh.
A mesh is a loop which does not contain any other loops within it.

In Fig. 3.10, for example, paths abefa and bcdeb are meshes, but path abcdefa is not
a mesh. The current through a mesh is known as mesh current. In mesh analysis, we are

interested in applying KVL to find the mesh currents in a given circuit.

CHAPTER THREE METHODS OF ANALYSIS _
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Figure 3.10 circuit with two meshes.

In this section, we will apply mesh analysis to planar circuits that do not contain
current sources. In the next sections, we will consider circuits with current sources. In the

mesh analysis of a circuit with n meshes, we take the following three steps.

Steps to Determine mesh currents:

1. Assign mesh currents iy, iy, . . ., i, to the n meshes.
2. Apply KVL to each of the n meshes. Use Ohm’s law to express the voltages in terms
of the mesh currents.

3. Solve the resulting n simultaneous equations to get the mesh currents.

To illustrate the steps, consider the circuit in Fig. 3.10. The first step requires that
mesh currents i, and i, are assigned to meshes 1 and 2. Although a mesh current may be
assigned to each mesh in an arbitrary direction, it is conventional to assume that each mesh
current flows clockwise.

As the second step, we apply KVL to each mesh. Applying KVL to mesh 1, we obtain
—V1+ Rii; + R3 (i1 —1i2) =0
or
(R1+ R3) il —Rzi, =V, (3.13)
For mesh 2, applying KVL gives
Rol + V2 + R3 (i—11) =0
or
—Rii; + (R2 + R3) i, =V, (3.14)

Note in Eq. (3.13) that the coefficient of i, is the sum of the resistances in the first
mesh, while the coefficient of i, is the negative of the resistance common to meshes 1 and 2.
Now observe that the same is true in Eq. (3.14). This can serve as a shortcut way of writing

the mesh equations.

CHAPTER THREE METHODS OF ANALYSIS _
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The third step is to solve for the mesh currents. Putting Egs. (3.13). and (3.14) in matrix

form yields

Ry + R, —Rg]rq__ Vq
[ —R; R, + R3[|ir| |-V, (3.15)

which can be solved to obtain the mesh currents i; and i,. We are at liberty to use any
technique for solving the simultaneous equations. If a circuit has n nodes, b branches, and |
independent loops or meshes, then | = b—n+1. Hence, | independent simultaneous equations
are required to solve the circuit using mesh analysis.

Notice that the branch currents are different from the mesh currents unless the mesh is
isolated. To distinguish between the two types of currents, we use i for a mesh current and |
for a branch current. The current elements I, I,, and I; are algebraic sums of the mesh

currents. It is evident from Fig. 3.13 that

1=y, =iy l3=ii—i (3.16)

Example 3.3: For the circuit in Fig. 3.11, find the branch currents |4, I,, and I3 using mesh

analysis. 5 e 5
10Q

Solution: 5v @@ ﬁ) /,) G

We first obtain the mesh currents using KVL. For mesh 1, 10V

-15+ 5|1 + 10(|1 - |2) +10=0
Figure 3.11 For Example 3.3.

or

3ip—2i=1 (3.5.1)
For mesh 2,

6i, + 4i, + 10(i,—i;)—10=0
or

i, =2i,—1 (3.5.2)
Using the substitution method, we substitute Eq. (3.3.2) into Eq. (3.3.1), and write
6i,—3—-2i,b=1= Lb=1A
From Eqg. (3.5.2),i1=2i,—1=2-1=1A. Thus,
Lb=ip=1A IL=i,=1A I3=i;—i,=0

CHAPTER THREE METHODS OF ANALYSIS



Al-Safwah University College (@

Dept. of Computer Tech. Eng “_ reaL IR ) o

c cg-Al.sfw Un v.-ry

Practice problem 3.3: Calculate the mesh currents i, and i, in the circuit of Figure below.

Answer: i;=2/3A,i,=0A. 24 | i
nv@ (4) élm/:\ @ :v
N
3.3.1 MESH ANALYSIS WITH CURRENT AP 30
SOURCES

Applying mesh analysis to circuits containing current sources (dependent or
independent) may appear complicated. But it is actually much easier than what we
encountered in the previous section, because the presence of the current sources reduces the

number of equations. Consider the following two possible cases.

4Q 3Q
MWW AW

10v @ @ 260 ﬂ) R

Figure 3.12 A circuit with a current source.

CASE 1: When a current source exists only in one mesh: Consider the circuit in Fig. 3.12,
for example. We set i, = -5 A and write a mesh equation for the other mesh in the usual

way, that is,

—10+4i; +6(i;—iy))=0=>i;=-2A (3.17)
CASE 2: When a current source exists between two meshes: Consider the circuit in Fig.
3.13(a), for example. We create a supermesh by excluding the current source and any
elements connected in series with it, as shown in Fig. 3.13(b). Thus,
A supermesh results when two meshes have a (dependent or independent) current

source in common.

6Q e 10Q

‘,V“( 0 fﬂh
[ 6Q 10Q

20\’. @ @ ;40 '»0\,'. E @ @ E 5;49

Exclude these (®)
(a) elements

Figure 3.13 (a) Two meshes having a current source in common, (b) a supermesh, created by excluding the current source.
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As shown in Fig. 3.13(b), we create a supermesh as the periphery of the two meshes
and treat it differently. (If a circuit has two or more supermeshes that intersect, they should
be combined to form a larger supermesh.) Why treat the supermesh differently? Because
mesh analysis applies KVL—which requires that we know the voltage across each
branch—and we do not know the voltage across a current source in advance. However, a
supermesh must satisfy KVL like any other mesh.

Therefore, applying KVL to the supermesh in Fig. 3.13(b) gives
—20 + 6i, + 10i, + 4i, =0
or
6i, + 14i, =20 (3.18)
We apply KCL to a node in the branch where the two meshes intersect.
Applying KCL to node 0 in Fig. 3.13(a) gives

ib=i,+6 (3.19)
Solving Egs. (3.18) and (3.19), we get

i]_ =-3.2 A, i2 =28A (320)
Example 3.4: For the circuit in Fig. 3.14, find i, to i4 using mesh analysis.

oy
)
T]T | (—1/ E 4n 'tﬂ
@ ! A
af| | sa I bi,
6Q = I ﬂ) ‘3:‘., (r,) gsn ffo .10\

Figure 3.14 For Example 3.4.
Solution:

Note that meshes 1 and 2 form a supermesh since they have an independent current
source in common. Also, meshes 2 and 3 form another supermesh because they have a
dependent current source in common. The two supermeshes intersect and form a larger
supermesh as shown. Applying KVL to the larger supermesh,

2i; + 4iz + 8(iz—ig) + 6i,=0

or

CHAPTER THREE METHODS OF ANALYSIS
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I +3i, +6i3—4i, =0
For the independent current source, we apply KCL to node P:
=iy +5
For the dependent current source, we apply KCL to node Q:
i = i3 + 3,
But i, = —l4, hence,
Ip =i3— 3y
Applying KVL in mesh 4,
2i,+8(i4—i3) +10=0
or
Sig—4i3=-5
From Eqs. (3.4.1) to (3.4.4),
i,=-75A i,=-25A,i3=393A,i,=2143 A

(3.4.3)

(3.4.4)

Practice problem 3.4: Use mesh analysis to determine iy, I, and iz in Figure shown below.

Answer: i, =3.474 A, i, =0.474 A, i3 =1.105 A.
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CHAPTER FOUR
CIRCUIT THEOREMS

4.1 INTRODUCTION

The growth in areas of application of electric circuits has led to an evolution from
simple to complex circuits. To handle the complexity, engineers over the years have
developed some theorems to simplify circuit analysis. Such theorems include Thevenin’s and
Norton’s theorems. Since these theorems are applicable to linear circuits, we first discuss the
concept of circuit linearity. In addition to circuit theorems, we discuss the concepts of
superposition and maximum power transfer in this chapter.

4.2 SUPERPOSITION

The idea of superposition rests on the linearity property.

The superposition principle states that the voltage across (or current through) an
element in a linear circuit is the algebraic sum of the voltages across (or currents
through) that element due to each independent source acting alone.

However, to apply the superposition principle, we must keep two things in mind:

1. We consider one independent source at a time while all other independent sources are
turned off. This implies that we replace every voltage source by 0 V (or a short circuit), and
every current source by 0 A (or an open circuit).

2. Dependent sources are left intact because they are controlled by circuit variables. With

these in mind, we apply the superposition principle in three steps:

Steps to Apply Super position Principle:

1. Turn off all independent sources except one source. Find the output (voltage or current) due
to that active source using nodal or mesh analysis.

2. Repeat step 1 for each of the other independent sources.

3. Find the total contribution by adding algebraically all the contributions due to the
independent sources.

Analyzing a circuit using superposition has one major disadvantage: it may very likely

involve more work. Keep in mind that superposition is based on linearity.

CHAPTER ONE CIRCUIT THEOREMS
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Example 4.2: Use the superposition theorem to find v in the circuit in Fig. 4.2.

Solution: 30

Since there are two sources, let A L+

V=V +V, 6V 103w 3A

Where v, and v, are the contributions due to the 6-V voltage

source and the 3-A current source, respectively. To obtain v, ~ 7'9ure 4.2 for Example 4.2

8Q

we set the current source to zero, as shown in Fig. 4.3(a). A o
Applying KVL to the loop in Fig. 4.3(a) gives sv (D @ 403 n

12ii;-6=0=1i;=05A ©
Thus, . (al

Vi = 4|1 =2V W= Y!i
We may also use voltage division to get v, by writing 10sn @sa

4
vy = 4_+8(6) =2V ]
®)

To get v,, we set the voltage source to zero, as in Fig. 4.3(b). Using

current division, Figure 4.3 for Example 4.2:
. 8 a) Calculating vy, (b) calculating v,.
l3=4+8(3)=2A () gl() gV

Hence, Vo =4i3=8V
And we find v=vi+Vv,=2+8=10V

Practice problems:

1-Using the superposition theorem, find v, in the circuit in Figure below.

Answer: 12 V. 310 50
AW ANV
%»22Q + gA + 20V

2- Use superposition to obtain vy in the circuit of Figure below.
Answer: vy = -8.572V.

30Q 10 Q2 200

90V éﬁOQ .GA éSDn 40V
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4.3 THEVENIN’S THEOREM

It often occurs in practice that a particular element in a circuit is variable (usually called

the load) while other elements are fixed. As a typical example, a household outlet terminal

may be connected to different appliances constituting a variable load. Each time the variable

element is changed, the entire circuit has to be analyzed all over again. To avoid this problem,

Thevenin’s theorem provides a technique by which the fixed part of the circuit is replaced by

an equivalent circuit.

According to Thevenin’s theorem, the linear
circuit in Fig. 4.8(a) can be replaced by that in Fig.
4.8(b) is known as the Thevenin equivalent circuit; it
was developed in 1883 by M. Leon Thevenin (1857—
1926), a French telegraph engineer.

Thevenin’s theorem states that a linear two-terminal
circuit can be replaced by an equivalent circuit
consisting of a voltage source V1, in series with a
resistor Ry, where V1, is the open-circuit voltage at
the terminals and Ry, is the input or equivalent
resistance at the terminals when the independent

sources are turned off.

Linear +
two-terminal v | Load

circuit -

—
'V\v‘.‘ .ﬂv—o—
Vo ; 7 Load

(b)

r.rcrl-‘+

Figure 4.8 Replacing a linear two-terminal
circuit by its Thevenin equivalent: (a)
original circuit, (b) the Thevenin equivalent
circuit.

To find the Thevenin equivalent voltage V+y, and resistance Ry, suppose the two circuits

in Fig. 4.8 are equivalent. The open-circuit voltage across the terminals a-b in Fig. 4.8(a) must

be equal to the voltage source V, in Fig. 4.8(b), since the two circuits are equivalent. Thus

V1 IS the open-circuit voltage across the terminals as shown in Fig. 4.9(a); that is,

V1, = VvoC (4.8)
Li o & Linear circuit with ©a
ear N all ndependent Ry
two-terminal % e -
e oc sources set equal
circuit -
o b to zero o b

Vip = v

(a)

Ry =Ry

(b)

Figure 4.9 Finding V1, and Ry
Ry, is the input resistance at the terminals when the independent sources are turned off,

as shown in Fig. 4.9(b); that is,
Rth = Rin

(4.9)
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To apply this idea in finding the Thevenin resistance R+, we need to consider two cases.
CASE 1: If the network has no dependent sources, we turn off all independent sources. Ry, is
the input resistance of the network looking between terminals a and b, as shown in Fig.
4.9(b).

CASE 2: If the network has dependent sources, we turn , o
H i it Circuit with
off all independent sources. As with superposition, allindependent .,
dependent sources are not to be turned off because they are et oyl ’
controlled by circuit variables. We apply a voltage source o b
.
V, at terminals a and b and determine the resulting current *

lo. Then Ry, = Vi, as shown in Fig. 4.10(a).

Alternatively, we may insert a current source i, at Cxcas wih
all independent

sources set equal
to zero

terminal voltage v,. Again Ry, = v /i,. Either of the two Y

terminals a-b as shown in Fig. 4.10(b) and find the

approaches will give the same result. In either approach we ¢

may assume any value of v, and i,. For example, we may

Figure 4.10 Finding RTh when circuit has

use Vo, =1V ori,=1A, oreven use unspecified values of dependent sources.

Vo OF .

It often occurs that Ry, takes a negative value. In this case, the negative resistance (v =
—iR) implies that the circuit is supplying power. This is possible in a circuit with dependent
sources.

The current I, through the load and the voltage V, across the load are easily determined
once the Thevenin equivalent of the circuit at the load’s terminals is obtained, as shown in
Fig. 4.11(b). From Fig. 4.11(b), we obtain

_ Vrp
I, = (4.10a)
R
VL - RLIL - Rrn :: R, VTh (410b)

Note from Fig. 4.11(b) that the Thevenin equivalent is a simple voltage divider, yielding V

by mere inspection.

Linear J l i

a
circuit Ry , >
VI = R
b |

b
@ ®) Figure 4.11 A circuit with a load :(a) original

circuit, (b) Thevenin equivalent.
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Example 4.4: Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.12, to the left

of the terminals a-b. Then find the current through R_ = 6, 16, and 36 Q.
4Q 1Q

T—
2V 129% @ :a R

b

Figure 4.12 For Example 4.4.
Solution:
We find Ry, by turning off the 32-V voltage source (replacing it with a short circuit) and
the 2-A current source (replacing it with an open circuit). The circuit becomes what is shown
in Fig. 4.13(a). Thus,

Rrp = 4112 + 1 =22+ 1 = 40
4Q 10 4Q Vi 1Q
 AAMA—O A ANN—0
+
129§ S 2v @ @ 129§ @ @ :» Vi
) o
(@) (b)

Figure 4.13 For Example 4.4: (a) finding Ry, (b) finding V.
To find V1, consider the circuit in Fig. 4.13(b). Applying mesh analysis to the two

loops, we obtain

=32 + 4iy + 12(i; — ip) = 0, ib=—2A
Solving for i,, we geti; = 0.5 A. Thus,

V= 12(i1 —i2) = 12(0.5 + 2.0) = 30 V

The Thevenin equivalent circuit is shown in Fig. 4.14. The current through R, is

[ o=V _ 30 40 A
L = Ren+R, — 4+Ry ANMN——0 Vi
WhenR_ =6, I} = =34 sov @ ZRL
WhenR, =16, I, =—2=154 .
20 b
WhenRL =36, I, = % =0.754 Figure 4.14 The Thevenin equivalent circuit
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Practice problem: Using Thevenin’s theorem, find the equivalent circuit to the left of the

60 60
AW AW o ,
it
12V 24 24Q Z1Q

b

terminals in the circuit in Figure below. Then find i.
Answer: Vi, =6V, R =3 Q,i=15A.

—A\AA—

4.4 NORTON’S THEOREM
In 1926, about 43 years after Thevenin published his theorem, E. L. Norton, an

American engineer at Bell Telephone Laboratories, proposed a similar theorem.
Norton’s theorem states that a linear two-terminal circuit can be replaced by an equivalent
circuit consisting of a current source Iy in parallel with a resistor Ry, where Iy is the short-
circuit current through the terminals and Ry is the input or equivalent resistance at the
terminals when the independent sources are turned off.

Thus, the circuit in Fig. 4.15(a) can be replaced by the one in Fig. 4.15(b).

O a
Linear © 4 J,
two-terminal Iy . < Ry
circuit o b . I
0 b
@ (b)

Figure 4.15 (a) Original circuit, (b) Norton equivalent circuit.

We are mainly concerned with how to get Ry and Iy. We find Ry in the same way we find
Rh. In fact, the Thevenin and Norton resistances are equal; that is,
Ry = Ry (4.11)
To find the Norton current Iy, we determine the short-circuit current flowing from
terminal a to b in both circuits in Fig. 4.15. It is evident that the short-circuit current in Fig.
4.15(b) is ly. This must be the same short-circuit current from terminal a to b in Fig. 4.15(a),
since the two circuits are equivalent. Thus,

In =g (4.12)
Dependent and independent sources are treated the same way as in Thevenin’s theorem.
Observe the close relationship between Norton’s and Thevenin’s theorems: Ry = Rty as in
Eqg. (4.11), and

I, =2t (4.13)

RTp
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This is essentially source transformation. For this reason, source transformation is often called
Thevenin-Norton transformation.
We can calculate any two of the three using the method that takes the least effort and use

them to get the third using Ohm’s law. Example 4.10 will illustrate this. Also, since

V1h = Voc (4.14a)
I = s (4.14b)
Ry, =22 = Ry, (4.14c)

isc
the open-circuit and short-circuit tests are sufficient to find any Thevenin or Norton
equivalent.

Example 4.5 Find the Norton equivalent circuit of the circuit in Fig. 4.16.

Solution: 80

We find Ry in the same way we find Ry, in YWY ©a
the Thevenin equivalent circuit. Set the 40
_ _ 24 @ § 50
independent sources equal to zero. This leads to 12V
the circuit in Fig. 4.17(a), from which we find Ry. ANV o b
Thus, 8 e

20%x5 Figure 4.16 For Example 4.5.

=40

Ry = 5[(8 + 4 + 8) = 5/20 ==

To find Iy, we short-circuit terminals a and b, as shown in Fig. 4.17(b). We ignore the 5-Q
resistor because it has been short-circuited. Applying mesh analysis, we obtain

h=2A, 20i,—4i;—12=0
From these equations, we obtain

ib,=1A=i.= Iy
Alternatively, we may determine Iy from V1n/Rt,. We obtain V1, as the open-circuit voltage
across terminals a and b in Fig. 4.17(c). Using mesh analysis, we obtain

i;=2A

25i,—4i3—12=0 =i;,=08A
and

Voc=V1h =5, =4V
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8Q 8Q a
© AW O a AN O

| lix=ﬂv
® @ a0 2
N A
4Q§ sng - ZA. §
50

12V
8Q 8Q
O AN O b AN O
b
@) (b)
8Q
MAN O a
+
(@) zsa (%)
2ZA . 5Q § V'I'h = Yoc
12V
8Q —
AMAN o b
()
Figure 4.17 For Example 4.5; finding: (a) RN, (b) IN =sc, (¢) V+, = voc.
Hence,
VTh 4
Iy =—==—=1A4
RTh 4
i i i i O a
as obtained previously. This also serves to confirm Eq. that !
. . .. < 4Q
Rth = Volise = 4/1 = 4 Q. Thus, the Norton equivalent circuit T
O b

Is as shown in Fig. 4.18.

Figure 4.18 Norton equivalent of the circuit in Fig. 4.16.

Practice problem: Find the Norton equivalent circuit for the circuit in Figure below.
Answer: Ry=3Q, Iy=45A. 3

Q 3Q
AN AW O a
15V + 4A + 6 Q
O b
4.5 MAXIMUM POWER TRANSFER

In many practical situations, a circuit is designed to provide power to a load. While for

electric utilities, minimizing power losses in the process of

transmission and distribution is critical for efficiency and Jj:\ g
economic reasons, there are other applications in areas such as *"
communications where it is desirable to maximize the power Vn.. 2”?1
delivered to a load. We now address the problem of delivering o

the maximum power to a load when given a system with Figure 4.19 The circuit used for

) maximum power transfer.
known internal losses.
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The Thevenin equivalent is useful in finding the maximum power a linear circuit can deliver
to a load. We assume that we can adjust the load resistance R. If the entire circuit is replaced
by its Thevenin equivalent except for the load, as shown in Fig. 4.19, the power delivered to
the load is

p = PR, = (2 )2 R, (4.15)

Rrn + Ry,
For a given circuit, V1, and Ry, are fixed. By varying the load resistance R, the power
delivered to the load varies as sketched in Fig. 4.20. We notice from

Fig. 4.20 that the power is small for small or large values of R but

maximum for some value of R, between 0 and oo. We now want to

show that this maximum power occurs when R is equal to R,. This

» IS known as the maximum power theorem.

0

Ry R

Figure 4.20 Power delivered to the

load as a function of RL Maximum power is transferred to the load when the load resistance
equals the Thevenin resistance as seen from the load (R. = R+y).
To prove the maximum power transfer theorem, we differentiate p in Eq. (4.15) with

respect to R and set the result equal to zero. We obtain

dp _ 2 [(RTh+RL)* - 2R (Rrp + RL)] — p2 (RTh + Ry — 2Ry) 0

ar, ~ Th (Rrp + Rp)* — Th (Rrh + R1)3
This implies that

0=(Rm+RL=2R) =(Rm—Ry) (4.16)
which yields

R, = R (4.17)

showing that the maximum power transfer takes place when the load resistance R, equals the
Thevenin resistance Rt,. We can readily confirm that Eqg. (4.17) gives the maximum power
by showing that d’p/dR?_ < 0.

The maximum power transferred is obtained by substituting Eq. (4.17) into Eq. (4.15), for

V2
Pmax = r (4-18)

4RTp
Equation (4.18) applies only when R = Rt,. When R_ # Ry, we compute the power
delivered to the load using Eq. (4.15).

Example 4.6: Find the value of R, for maximum power transfer in the circuit of Fig. 4.21.

Find the maximum power.

CHAPTER ONE CIRCUIT THEOREMS _



Al-Safwah University College ; ‘!lEEF)

Dept. of Computer Tech: Eng Presibit ;_cjp“

Figure 4.21 For Example 4.6.

Solution:
We need to find the Thevenin resistance Ry, and the Thevenin voltage V1, across the

terminals a-b. To get Ry, we use the circuit in Fig. 4.22(a) and obtain

6 x12
18

6Q2 3Q 2Q 6Q
MW MWW—O M

30 20
AWV MW—C0
+
Ry,
12Q ~—  nv @ 12Q @ 24 Wy
o
(®)

Ryp = 2+3+46|12 = 5 + =90

O

@
Figure 4.22 For Example 4.6: (a) finding R, (b) finding V.

To get V1, we consider the circuit in Fig. 4.22(b). Applying mesh analysis,
—-12 + 18i, — 12i, =0, b=-2A
Solving for iy, we get iy = —2/3. Applying KVL around the outer loop to get Vr, across
terminals a-b, we obtain
-12+6i; +3i, +2(0) + V1 =02V, =22V
For maximum power transfer,
RL=Rm=9Q
and the maximum power is

_Vin _ 222
Pmax = 3p T 4xo 13.44W

Practice problem: Determine the value of R, that will draw the maximum power from the

rest of the circuit in Figure below. Calculate the

maximum power.
Answer: 4.22 3, 2.901 W. 1Q
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= £,y Sin(Wt+P)

With oiffarent phases:
€,z &, sin wt
€ =Em silwt +P)
€, =&, Son(wt —P)

A plus (+) Sign whow uted

4::-95-—
e::

-¢ 0 ¢

Em S;}:(MJ‘.’-‘#’)

A covmecetion with phate ol flevence
denotes ( Ieaol) wheraad vw inus C—)

:»‘.%v\ denotes (\o«g).

Seme Yseful Relations

S’t'ﬂ(wt-f--;_l) = eos (wt)

co::(wt..?.‘.) = Sun Wi
2

i ]
St +90)
Sin(wt —90)

]

stin(-Q) = -
cos(=B) = co2s6 5
—6in (@) = 5)0(0t150>
e dd. Q) = co.r(@i’lao.)



Examples

hat 3 tha phate difference befween +he {"p.l'."c:luiﬂﬂ sets af
l-"dﬁ-ua..u Sund Currremts 7

oy i 1]
(a)., w= 1o sin(wt 35 ) [ Selutions o VEIC sl ga)
i =5 Sinlest + 70°) T—— ; i .
l:.ﬂ::l. "=55"?|:‘f-='='|"?'ﬂ':'
& [=]
tb)y W= fOSmlwt-2go ) -
5 3 & =" - 30"
L= 5 s {wt+60)
ﬁ-ﬂn
[ L= 2 eos fw!’-;—!ﬂn_}
Y= 3 .5"..:'.-.&-.. ':-wt-.fﬂﬂ:.l The phaje u":-ﬁi‘:rnﬂcﬂ = 'ilﬂ
£ -l"mzui"a v by ..*,-,3
(), &= —2easfet-62) (B8 v tags 4 by 40
o = j-ﬁ'f:ﬂfwr—fﬁﬁnj oo
k . [ ] - [ =
(e). L5 = Smial+ 3 ) by, The phase o FF:rul-.i-'.-:- Ca+20 R0
W= 2 Siafwraero”) S & deads v by Er:?
oy ] .Ea.E-.I = by Eﬁ' ; .
£ =i amiadd +EGE
= s fe e s as)
-s0” o a¢° wi
&
Sena i larly o Clun E'.‘?'i'“d Fhe FESIEE —J B

af c,ef ol & ¢ Ound Fhe reswlFs are:

'!:l.'::l'. & -]
P o 2eosCulh arB) = 2 Sin{wttr0+90) = 2 sin(wE +iod)
i = 2 8w (ot +r00) } -
P =3 8m (wt-ra") = Tha plase olifferewca ={f02 +r0) =110

' =
o & Fead v By fro ﬁ
(). 2 : 3 ; . (£ ) = Sin(cid ~750)

L T =Szt +30) = omwt+ 34 =
b L& Semwd-re8 ) —— »
= 2 S Wi +r0) S The phase differswca = (/50 4 ra) = /60

Lo deadds g by en’

£ -:ml-.f:m.i'-:-a:;} = St 430 4 180) = Sim(wt+2(0)

oy =
= o= sta(udk421d) . -
gl IEEJ.*{L“.#-I—T-IJ.} }#‘.m.n_ PLWE 'Ii'pF-Fg.-rmE.lJ.d 250
s 4 fead o by ‘.E'::':r;
{ey, L = —'Ei:.n:it:u:.j_- ﬂ.:::}:r Em{ujuﬁm_f,ga:l: Eﬁ-ﬂé'il-d.:f:—-"i'_.ﬂugj

= 354«.{1..':.."-. zq¢4~q:=>— Ea..m(:mtv-fﬁ"c} Voumd { ang
V= Eﬁ.uﬁ{:u_v‘;-frn} =z mpms.{; "'-:“?1'-"3-5‘1



©,
S.S Averagc Volue

e Kaa Canireccye vatne o O a.U.'vrvm.bwa mw-.l-ﬁnrm 16 +he eﬁutuaih&
Cde) volne ewar a cownplefe uﬂ.c.h..'[vxcsw-& AN L o
vedua o"& o I.alb.pu-ﬁb-rw. A4 tt'u-u-m as
n;mal S =- Byea unday $hae Cavve

Lcm%t-'r\ of e car e

For r.awr.er uwzfmm the om<a ireolsy Fhe carar  4a d:/{,’cmlt 40 obtain
olirectly , So ot coun be evelualiel é?; .A.Zc?raflon owary Hho tpecifred

pw‘.od of fime

E:'xa:wp/e
Sk tu Qintrage vodiz cﬁ Ha wo..w-.ﬁo,m showwn ower osne M

yete - jucvo

———————y

Soludron

Aera wnclar Fht coarnt

a% L&-?M\ oF the curw

-(_3)(4)-<f)<‘() = 1 Vit

3
Examp/é’
Calculats Fhe aartrage vedue of tha woweform Shawn .
W
. uan 5':**6
Solutron
S -V‘-‘-V\ ®°c V GA.MG i =l
? :vm ; ° = e
P °/ V,, 516 cj_&i 2 *
Qv JT ﬁ j 14 s/hea’g =l.. c'cag I
o m
]
/4 s 2VM ;'Vn (m Jl’-(a:d)
ol
& = = = 21‘/”7
%w = 0.63%7 [{”

@ Note ; Thio vatme of Y, 14 for on< half cdod onty 7
= For comglete cycle (anc cycl'/e) => Vay=0



S¢a Ef'f‘ecc/'ue Value (or Root Meon Square Value r-ms)
The eFF:cf-;re volac
Cor Phe rims yalue) of o a/f:vnaf-ing uau.c{a:m o« ?wuw- by the s+c~d7
(de) cimremt Wuicl whisn ﬁ(ou'.w Hm'ow%k 2 Rircuik, ﬁO' o %‘\\Hm
time produces the same heat producee! by bthe aﬂ-ematv‘»a carrent’ w he 61““.'“3'
f’hvouah the goame civeuit 4dor the Sawe Eime.

_r k3
e Ear k &_dt }
rmg eff -

For simple shaped wn-v.«.:.a’um.s

o A - Area [‘(-(t‘)l;l
T

Exarmple .
Faad tlee f_-.ﬁ'ccﬁuc or rms valua of the m.v..farm chown.
IN4e2
3
&
0 % - & (Cs)
| e 0 | |
i~ a2 Te e olf
Solution A le :
- ﬁbdzbﬁ {:r:t W le) (3) =9
as show ta the £rg. g /:
(-'f):_-f
v .| Area [vieer) o2
a3
£t (3 | -2 ()
Q0 4 &
=\/(‘?)(¢)+(!}(4)
E
= 2.23¢ V
Example ) ]
For tha tAM—(éorM FALm iy (,( = I, 6hnwt ) y calculale
the rmg value.
27
Solution / i
———— Igf.f_:.frm_‘. = = d&'

c



: N . £&e
we hawmse L= Ipsnwg = L,SmB
oy - rxo
5 4 . 74 ~ .
e Irm; = = /(l’m Emg) g = _;! sin B dé
°
Y
L / ((-ca:i@) o0 I 6_3m29

13, "I,MJ;-;fm = 0.70? Im = Tha rmy wt.lu.t
- 2 - Sinusaidal wo-«,{oynu
(uoff-agt or CA-WFM)

57 Cirrews/t E/ements inthe Phasor Domain

® AC Through Pure Ohmic Rasistor Alone

X
. —
In the cct. shown , Le€ tha applud . ._éh Va
<
Uo/fa?t be given by :
o+ Jo-v =
. : e f-]
e = £, sinwt =‘€-$m€ 5
VS ) R
R R

¢ = I, smnwt

Sl l ?/e-:.i/? = IR cinwt = lfnainw.t l

@ In resistors, the current and va/lkage arc{r'npha.zi]

.r:m b/—\)(-‘ ¥

Wi



¥ The response o phe resishive load /s wen Farm J.-..f.-:!, the vadue of

the resistomce ofmst z::ha.«.ﬁ,; ad the ﬁuﬁm:ﬂ. ahwaw_a..
&1

# The #”"‘"""3“ Pewer (Real Power) :
The imdbtantonssul power +o the

resistive [oad or -afuhen j”.'.'i' '

= - e ;
u f =L . ¢t £)
; i =V I =smwe =V, T M e i 2
Eni*"’rm e g 2
2 - o l"rm.rm 'Hu-.rm
ES - DRI
| f ey e ——
i Eens fant Tint & vagying fFerm
Ferm £l ith avirone valiut =0
P 2P o= Yaudn | o tm Im
e 2 vz ¥z
= ¥ I =V I
rmsE rma e if‘,r
err P, = F= S Iil"rrr; £

+ The Power factor is oefined as the cosine of the phase amgle
Betfusen Fhe :.'a."f'mire euned clarrant , L€,

Fower factor = Pf = ,; = cos ¢

where @ 13 the phase ofifference betuween 4 aud P i Sitee He
va ”‘cﬁ-?ﬂ. ouesl ciarrewt sre wm phare [:F-i:.‘.' , The phase Aifference =al,

then ; ¢b=p .
L% Eg‘j#p = cmafl = |

= power facter = = Far resistive loas

oy



E‘-} AC ﬂ?ra:-:ge‘? Pure Tnductance Alone L)
I
s Edrri L
o= .|'I_ —_'f. . 4 L
£ e ——
If the cerrent PR rgr.:w-: by + 'ai—-l

L = o St el
= Y = Li{fm;rhw.rj = wily, coswt

oF "li = L;?-Iiﬂ]. atF = P:’E‘:"'i'f'fv'.t'f"?zj e I-"rm.-‘.- mifm

Crom Fhe =Tuc.n.t.-'lc~.::: o g -f-' el I.-'i Pt - Ll efear et E-E' Lead -'l-’l d’?}f 2

a..-...g,{u af (94 ), or the currewt & {ogs U, By (70 )

- At e dsﬁ'és the peactomee SF S dncleac Fo ) s & t.-l-lﬂ.H 51.:;.1.-.;:.ﬂar ta
Chms faw

<, I
_."?n.‘.ﬂ.tﬁ:;h.-:g = ._a.ui E afmﬁ.e
Effect Cerrent
I £
Regetance = "]{.L - Bl ad
gl an Fralee fary Im Lm
-'"‘il =l

a Tha fr—l—a"m-la reap=nse o Ff Fha pure ioctuctor it clerived ifrbm the

rFelakian : L x‘r_
XL=L¢LJ:.E.:ITFL F:Irl:.:.:_r
a i - F‘nr Li--l'._t
Suacd Lh SHROMT A J".-‘L.T. J.-'.?ﬂre ! Xi AAAE e e
o Fhe Iﬁ'.--.?mﬂ.r_-r'.u prcreacad s a Guaear {
re F&-i'fﬂﬂ#-"?;ﬁ -
o .

Fower factor

The power facftor p-f = cog .::’,'f.!

Fce .-:'?1‘5 = gqg° =
== o Ir:Tt“ = cas g0 = ﬂ]

Tha .::.u-z.ra.%p_ p o wer i
: The tegbanfomscds PO wAar {or +he paune snrolase Friag
Siraw/fF L3I @




EEg

V. T, 8inwd. Sin Cwk -.-Eh;_'}

R, =4

=1 8]

Mwmﬁrl. valoe af Pid&-(v‘rd =

) AC Through @ Pure Capacitar
: For the Capacifer ef ta ﬂ.’:rvre choun
I

&

>, =Gﬂ’]ﬁ= q0 v
a d'fs. . =
i
Lo & = I-:';, S bl 1
: +
e {'[.-"" s wlf) o L».!'"j‘
(5 ﬂ.ﬁ., -
=] ""-':".: = w I:-"'rm oaF n.r,f
1Y 2 JIm sin (et +g0% )

el L, S (wa 4 90 )
, that 4 Leads U, by

™

T¥ an clear, a"'rn-m t+he .:_qm.emﬂ_r o f .& PRV 2
.ﬂu..:n.._?f.ﬁ.agq'g =T y&si-ﬁbp’qlﬂ
» The capac Five reac bowsss {’ch Ld

Vm s Vi i

&

K E——— =
i T

ra i

# Tha fr;u.quh. riapense u-ﬁ o pure sapacifer
abowne cuad 5 shoon Aa thae E| UTE -
}:,’ s nl:.:—renr'--#ﬂ o s .ﬁw-t.dlmuﬂ-

iy mecTrases Aw A wan-binear behauiswr.

derived ﬁ""“‘ the relotion




+ Power facror

: . a
L S fhi phows alifferénze hHefueen -I-'-Eq‘?lrt-ﬂ'l! 1"I,= 44 33

hemng that P =gg° , Fhen !

®

| or

» Tha Qrrirome power

.

=
corgh mess g0 =0 ]

[=]

e

i

¥ I =5
m

Tt iwumm.am peuwstT P b -=E1.u-l-.-, ag s

W Cu it +-='|'t:':.

Tﬁha,uui%-ﬁnnmmwﬂrat

\Ju_l_p.q.n. JEH '&-l-‘ra

Tha Avitegl powlr SFf o pure Capacihue Lewol 40 e~

Eﬂmﬂ'ja#y ﬁf"‘ AC parambers ;{”‘ <, Lg o

—

] L oV
L

Efement 2 ¥ o
Faramfer
Power factar 1 : & a
Eoa 4# |
Aue Fawer s
rage Faw Vit Lo i T
,r:;mr =P ; = Frmytrma o ]
IMFE.sr'drjﬁ'E“ iy Ny N = 1
R L = S g
FPhase .ﬁ".-'f?i:rgn:r o S'ﬂg Ei'-_ oo cls .-I:I- Eﬂn 3;‘ d'na-_: .1:'-':
: ap & doge Ty or £, l=adls ¥
befween V& L 3
Freguene Laiferm Linear Non-linear
Kesponge {’.:gn:fnnr::l ffn::re.nwhg] 5 decr#aﬁan}




i Y &
58 Calculating Alternating Quantities £e
Example < -‘.r
For the circart shown, e ' ) >
caleculate £ , "Zf 4 and £y are : |
: 2, 22
£, =7 Sin Wk )
dy = 10 sin{wkt +60)
Sa/a Lion (¥me domain calcalation)
Q=i e iy
= ? Sinewe + 103inlat+ so)
2 7 Sinwt + f0CiAwtcos€o’ + meo.swtamc;‘a
S A =12 Clnwpr v 8.66 coswt
Divicle and multiply be 1’23.4. B.ssz = /4.8 , we g-ct
L4 = /4.9( L SinWt + Bbl cas wi’)
4.8 4.8
"“‘:’.‘Q L3
4
e.6¢
@
:\/,...—- 12
..l} 12
; s - ¢ a8
S e = i4.3(«=a.s¢= Sinwt 4 Stn P coswi) e 8.6¢
SING 2
4.8
=2 £ = /4.8 Ssrnlwt +¢D)
; : 2 5.66
o & = 14.8 sin(wlt 4 35.8) *ang = T
g.68

er ¢ = tan (—)

Solution ( phasor ctomaw calcatat fan) g
! = 35.8

éfx?,,‘,«,ux .,p_rm‘.-.-? &Cﬁ‘:zo "
Lg = 105m (wt+60) o Iy, =10 £ ¢"2 =60 Leading

- P /_. |

! - za(+60

I, phasor representation

‘s Mors zonm co .wponw-b!
=/ e-o.sO -+~ 10 c..sé'o
= 12

° » Vortical components

a L] 1 D
= Psin0 +10 660
.66

phasor dragram

LA
2 Rggu,]f'ant ;\/‘22—‘- 8.66 = 14.8 A



@

EFé
w ] & . a
The phase ougls P = tan ?.:E = e = < = /4.3/35.8

4= I4.B Sin{wk =35~E“_} ad before,

Phasors

H TFu.Fh..l_an: -l:-i ey Fougl

at a fired angle frem tha pesitive real axis oA Fhal

represents a simasaidal veltage ar currewt M the Uecior
demain,al £=z0.

i3 veelar thol Aag o constond auuplitude

Fer excuwple ; J{'; we haus fo volfeges U ascd Y, 7 M by ¢t

v, = I-""mlr Ssm alls
cret el

' &
V, = V,, sin(wt+30 )

e wilf shaw Fhe #ime olemain aas phaser somain rep

resenfatian
af the two Uﬂ--"fﬂ'.?ﬁr.'h Guadd *he retulftan

d‘y lf-’ﬂﬂar '

wk

T ;
' I!';?rﬁ'r.rr wi

o V= lrin Gt v 9)

Phassr semein r:lprcienf-nﬂ'mn ll
éi
¥ o= LI‘I;?H /

Ve = leﬂ

Tﬂm: Somaia ragresen T,

e L, = [-':”faa'n E

v, = Vi, St (@t +90)

a
L] '
v, = meﬁﬂﬂ.,ymg.{?ﬂ v, = Vpp sia (wt+8p)

NOTE) = In ?..:Msnr.ﬂ r i s customary fo &S€ the rms (rm' =||f';'l"-::r'-a'-'-fi:}
valies (instead of max. values ) in the phasar

rrpr’e..t.:n+n¢idr|,
as will be shewn inthe fofowing ekamples.



Ezxzamplc _
Convest the faliowuing uanéities from the time domain te
the phaser sfemain.

a. V2 S50 £inwt

&, €9.6 sitafwe + ?Eﬂj
. &5 Eim W

o, &0 cm=s ol

E'p.-"':lﬂ.’.‘ﬂ-ﬂ'

Time damain Phasar demain
[rl
a. VZ (So) sinwt safi'
b. £5.86 Sin (it + 72 ) 4g.21L32 .
[ = L5 Sin wWE arg2lso
d. 80 coa Wb 3f.g2 [g0°
Example . .
. Write the silqusoidal expressian fer the falivwing phasers tF
the {requency (8 60 H2.
@, I = t0L30°
- =]
B, ¥ = tig/f-70
Selution
Phasor alemearn Time demain
N (= VZ (10)8in (uts 30" )

= Ih.igsin(anfe+aa)
(o ity sin { 83778+ 30 )

1l

i

B. I.:"' = Hs{'-]v:a = L-"E_fr.-sj :r'n{i.rrf‘g_?ﬂ'J
Y = [62.6 5/ fﬂ??:-?g“}




@

5.9Complex Numbers EEG

1 A complex number /s a pumber that represcnts
a po;r)t w0 o Fwo Smensronal Plane /ocated with refarance 10 two
distinct axes . Ir defines a veetor ofrawn frem the origmn to thot point,
The plance used Jo represent complex numbecrs s called the complea
plane ; rhe twe axes are colled rthe rcal/ ond r'magf'nary AT tmportont
that 1the scale on rhe axis of l./ﬂag//‘)an'es mudf be the same as that

on the axis of reals.

Ld's
.Jl,
.J'.3
L g2
L g1

Imag;nary Nxis

Real Axis

e N & v T g L

€ -5 .4 -3-2 =t b I 2 3 & 5§ ¢
- -2
--J‘?
Diagre”
——JS

The complex plane

Ceoemplex numbers can be représented rn the Faﬂau'mﬁ bor WA S !

1. Pecfangafar Form = E=a "‘J b
2. Polar form => £ = Emﬁ
3. Trigonomectric form => E = &, (cesd +jsin b)
L. Exponcntial form = E = Em ed

-
» Rectangular form

s T4 (s cusfomery A *p'w'ua éo'rwx to denobed Hay

:omplﬂ*x Wwuwwbers as |
LE = RF X

whire ; Z 1S the Convolex Auméber,
R 15 tha read pork,
X g1 ths "Ma.ainary parl. : B
\j. M (VN cptvmﬁor = V'_—1 omd an equ&\!a.lu\-t +o 9o PL\‘NJC

engle.




For example , the complex pumber e E+I:51 L I‘Efrue.uInd
mn the couplox plane ai shown: Jy iMaginary
2=(2+j1)
1 e === =
|
|
. L Real
i L 2

Maehermatical
Operations in the Rectangular Form

B — o,

» Eguality
if e Aave Fwe cowplex numbers
g £ = W
&t ahs ¥ oz

-
-

F'T-"'=-¢f+u|i.|.-l s then
El

En:amlp."n_-
Sapen that

2, =2, , find the value of X

S lution
9

= Addition and Subtractian
The sam af

2{:£+J'n1 s owd  Z

2:..;-:...."-'3 =

, Fhea /f fellows rhat

S X, f

two cemplex Aumbers

has a real number =gual to tAe Sum of #ie realcomponenés
gl = ;mﬂﬁ;nﬂﬁn mumber egual fo fhe sam e f the .f'mn?.;nnry

:ﬂml.nn-ﬂnr'rd-s.

Example . - -
5 =riten E‘-:er-f-JEJ, ansd Z,
=i+ £,

'

Eamtian

- _—

2‘.4—23
2453 + 4+

) :

7 o (6 +]jb)

=

2 (4+j1)

o

-_E'-.- alf

v 2 3 & 8 & 3

z=(4+j1) . Find ET’

&+ J 4

The F’“'“‘”*""‘.} raha Astned u wiech floe "‘-‘*""*["'"-fl D sml:ui-'ru.c'l'-;mm -

quantities ma tha cowmples plana,



» Multiplication
= The product af a real anae! .-‘mq,a:lﬂﬂ'.rpr Aumber

IIS rlmpﬂ.:'nnry i T."-‘H:.:.'
2(;j2) = ;6

The prodfuct ef fwe poSitive imaginary numbers

s real owd negmtive , +hus:
(j2)¢j3) = =6

—_—

P

(J8)(-34) =412

Smee (i) )) = -1
Camplex Aumbers are rale/plied by the ordlinary rules of algebra.

As an exampie ;|
(2304 ) + (2301 o (jaca) +jay(jn

B+j2 =+ jl2-23 = S+ jih

Iﬂﬂenurn.f_..' ]—
s+jb)(ev+jd) = (qc-bd) + j(ad 4 be)

(4
-~ Division I._
= By weer of MHiwsirabion , /et wi cowelar $hy division ¥
V= g+ 1a) by E={1+J:J- )
e aaidlT
w The frrae rfep Z 41
1o te multiply Poffi Aumarafor ouw.s cdenominatber
by (2 - &1} which <5 called eswaplex tnuhuiﬂh
= ﬂ-:h::m'-.ﬂh‘rﬂ'l" ad wiwally dewstred by mtterisk,

I = 24;!
I% = 2.1 a comples :.:thu?n.ﬁ i

> = o
IFI}EI*:I = Real value

them , ' '
LT 5,0 _ (Sit0)2-31) 20415
z+;1  C2+51)(2-)1) N
vy PR 4+ 02
2 =+ 1
= ot
ﬂ?“'ﬂ-ﬂ"l‘ : g.*d',l': a'l:'-l'—bqr bﬂ-_-ﬂ':f

""'L'I"J"r :E+d= I::E-'I'dl




o The lJI operafer EES
% g .
J = =1 = §0 ccw rotabion
[ ] Bl
.:12 = = 180 ccw rotfation

=
==y = 270 ccw retalien

I

. e .
.,‘IJI:'E = Ji.jz +1 = FEQ ccw rolation

e we hpwa alss:

y :
]7 — =] ‘1
s

Felar Farm 1
In thiz ferm , the complex pumber 4 represented a:

E:E&_

Where & 5 the m.:..;nr'f-ude tlﬂ-i? - TP | "-',t’ L4 m'waat-ﬁ

measured counter- clfackuide
J
b

(8

e

e

- sl

- A4 ngﬁ._,tiue frgn has +the effect showsn e the F|é--'.|rf

— @ wicelt g BT

~

"I/.; i = Koal




@)

Example

Ekercsh the fﬂ-‘llr-ﬂm.:nj = o kel
&. A= s/f2?

At b aert -":b..,. e -:-n'-‘afl'u::'l: Ipl’ﬂn,&_

= =
@ =37 /lze =
C = - 4.2L62 :
)
Selution B
e
iy A
i =] g
L . p*
&D
8
Y =0 —a Rgal
4"
w
&
i
e

Conversion Between Farms

w Rectangular feo Polar

1
Example

Canvert the fallowing frem re ctangular fo pelar Ferm,
S =2+j4 J

E:J'FJ-*'-':
e tuote Cryf 3% 4 :' “__J'T
rﬂafmi-u o -+ c :
= 1'-'- ]
' 1 e | i
?'Fu.ﬂ-'--?/& & = tan (E—-_:I 1' &3 = Kool
- 58:13° et e
-
v & in the polar farm i3 [y ESES_“E
v
= Polar te .E’e:.l"a.-‘rgulrﬂ."'
- o
C =10/%F
E‘xamp!"e
: onverd Fhe following ' e
fram polar fe r::r‘nn{ufﬁrr farm: o .
- i el — ma)
C':.Fr:"i'll.#—s

C = Real + I"“‘“EI'““"J Real = 10 ea3 hﬁn = 7.07

WS = JT 45 ¥aT Imaginary = 16 sinis = 7-07
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AC Network Analysts 1

Demonstrative Examples

* Mesh (Loap) Analysis

Example
Finel the power owtput ©f the voltage source

in the circuit shown ; prove that +his pouer equals tha
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w Loop !
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2 Aetive , Reactive and Apparent Power

r The F'nu.:t'r Th'a._HEIrE'J

——

+ The Appareut Peuwer
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3 .|r|" rs ﬂl‘t.l':r'ﬂtd' B ke r.::‘,rp'rn.:q,{}

of the power facter of the coid . Hence
T e L S i 1 2 z
: L K : ':?Fn:f--:r = = = -_....‘er = Ret A
power Fackar ces P Re Re
:TL § .?'r".‘:ira:

T >
i Ko /s too amall compared with

—, Xe
[ &,r.r.i-nr E: K




» Nodal Analysis

L]
E

Example
+ Write the nodal equations fer the Slrewit shown ;
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Example
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