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Key Point: Charge is an electrical property of the atomic particles of which matter 
consists, measured in coulombs (C). 

 

CHAPTER ONE 

BASIC CONCEPTS AND UNITS 

1.1 Introduction                     

         The study of an electrical engineering involves the analysis of the energy transfer from 

one form to another or from one point to another. So before beginning the actual study of an 

electrical engineering, it is necessary to discuss the fundamental ideas about the basic elements 

of an electrical engineering like electromotive force, current, resistance etc. The electricity is 

related with number of other types of systems like mechanical, thermal etc. To analyze such 

transfer, it is necessary to revise the S.I. units of measurement of different quantities like work, 

power, energy etc. in various systems.       

1.2 The Structure of Matter 
          The structure of matter plays an important role in the understanding of fundamentals of 

electricity. The matter which occupies the space may be solid, liquid or gaseous. The atom is 

composed of three fundamental particles: neutron, proton and the electron.  

Fundamental 
particles of matter Symbol Nature of charge 

possessed Mass in Kg. 

Neutron n 0 1.675x10-27 
proton  p+ + 1.675x10-27 

electron e- - 9.107x10-31 
 
 

1.3 Concept of Charge  
           

 

     

The following table shows the different particles and charge possessed by them. 

Particle Charge possessed in Coulomb Nature 

Neutron 0 Neutral 

Proton 1.602×10-19 Positive 

Electron 1.602×10-19 Negative 

1.3.1 Unit of Charge  
          As seen from the Table 1.2 that the charge possessed by the electron is very very small 

hence it is not convenient to take it as the unit of charge. The unit of the measurement of the 

charge is Coulomb, so one coulomb charge is defined as 
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 1 coulomb= charge on 6.24×1018 electrons  

Key Point: Electric current is the time rate of change of charge, measured in amperes (A). 

       

The charge associated with one electron can then be determined from 

Charge/electron =  e =
1𝐶

6.24 × 1018
= 1.602 × 10−19𝐶 

1.4 Concept of Electromotive Force and Current 

• The free electrons are responsible for the flow of electric current.  

• A conductor is one which has abundant free electrons. The free electrons in such a 

conductor are always moving in random directions. 

 
Figure 1.2 the flow of current. 

          The small electrical effort, externally applied to such conductor makes all such free 

electrons to drift along the metal in a definite particular direction. This direction depends on 

how the external electrical effort is applied to the conductor. Such physical phenomenon is 

represented in the Fig.1.2.    

• The free electrons as are negatively charged get attracted by positive of the cell connected.  

• The flow of electrons from negative to positive of the cell.  

• This movement of electron is called an Electric Current. The movement of electrons is 

always from negative to positive while movement of current is always assumed as from 

positive to negative. This called direction of conventional current.   

     

1.5 Relation between Charge and Current 
          The current is flow of electrons. Thus current can be measured by measuring how many 

electrons are passing through material per second. This can be expressed in terms of the charge 

carried by those electrons in the material per second.  
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Key Point: potential is the energy required to move a unit charge through an element, measured in volts 
(V). 

 

Key Point: the difference between the electric potential at any two given points in a circuit is known as 
potential difference (p.d.) and measured in volts (V). 

 

Mathematically we can write the relation between the charge (Q) and the electric current (I) as,  

                                                     𝒊 = 𝒅𝒒
𝒅𝒕

                                                        (1.1) 

Where current is measured in amperes (A), and 

1 ampere = 1 coulomb/second 

 The charge transferred between time t0 and t is obtained by integrating both sides of Eq. (1.1). 

We obtain 

                                                𝒒 = ∫ 𝒊𝒅𝒕𝒕
𝒕𝟎

                                                      (1.2) 

                                                 𝑰 = 𝑸
𝒕
    Ampere                                                 (1.3) 

Where         I = average current flowing,      Q = total charge transferred  

                   t =   time required for transfer of charge.  

Definition of 1 Ampere: A current of 1 Ampere is said to be flowing in the conductor when a 

charge of one coulomb is passing any given point on it in one second.  

1 Ampere current = Flow of 6.24× 1018 electrons per second 

Example 1.1: Determine the time required for 4×1016 electrons to pass through the imaginary 

surface of Fig. 1.5 if the current is 5 mA. 

Solution:   Determine Q 
 

𝑸 = 𝟒 × 10𝟏𝟔
𝟏𝑪

𝟔.𝟐𝟒 × 𝟏𝟎𝟏𝟖𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏
= 𝟎.𝟔𝟒𝟏 × 𝟏𝟎−𝟐  𝑪 = 𝟔.𝟒𝟏𝒎𝑪 

                  Calculate t                𝒕 = 𝑸
𝑰

= 𝟔.𝟒𝟏×𝟏𝟎−𝟑𝑪
𝟓×𝟏𝟎−𝟑𝑨

= 𝟏.𝟐𝟖𝟐 𝒔 

1.6 Concept of Electric Potential and Potential Difference 
           

          The electric potential at point due to a charge is one volt if one joule of work is done in 

moving a unit positive charge i.e. positive charge of one coulomb from Infinity to that point. 

Mathematically it is expressed as 

                              Eledrica1 Potential = work done/charge = dw/dq= W/Q                     (1.4) 

1 volt = 1 joule/coulomb = 1 newton.meter/coulomb 

In electric circuit flow of current is always from higher electric potential to lower electric 

potential. So we can define potential difference as below: 
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Key Point: This property of an electric current circuit tending to prevent the flow of current and at the same time 
causes electrical energy to be converted to heat is called resistance. 

 

Key Point: 1 Ohm: Is the resistance of a circuit, when a current of 1 Ampere generates the heat at the rate of one 
joules per second. 

 

          Thus, when two points have different potential, the electric current flows from higher 

potential to lower potential i.e. the electrons start flowing from lower potential to higher 

potential. No current can flow if the potential difference between the two points is zero. 

1.7 Resistance         
          When the electrons begins flow in the metal. The ions get formed which are charged 

particles as discussed earlier. Now free electrons are moving in specific direction when 

connected to external source of e.m.f. So such ions always become obstruction for the flowing 

electrons. So there is collision between ions and free flowing electrons. This not only reduces 

the speed of electrons but also produced the heat. The effect of this is nothing but the reduction 

of flow of current. Thus the material opposes the flow of current. 

 

 

The resistance is denoted by the symbol 'R' and is measured in ohm symbolically represented 

as Ω. We can define unit ohm as below. 

 

1.7.1 Factors Affecting the Resistance 
1. Length of the material: The Length is denoted by 'l'. 

2. Cross-section area: The cross sectional area is denoted by ' a'. 

3. The type and nature of the material:  

4. Temperature: The temperature of the material affects the value of the resistance.   

So for a certain material at a certain temperature we can write a mathematical expression as, 

                                                               𝑹 = 𝝆𝒍
𝐚

                                                         (1.5) 

Where           l= length in meters,                     a= cross-sectional area in square meters 

                      ρ= resistivity in ohms-meters,    R= resistance in ohms 

1.8 Resistivity and Conductivity 

          The resistivity or specific resistance of a material depends on nature of material and 

denoted by ρ (rho). From the eq. (1.6) of resistance it can be expressed as, 

                                𝝆 = 𝑹𝐚
𝒍

    𝒊. 𝒆.  𝛀−𝒎
𝟐

𝒎
=  𝛀 −𝒎                               (1.6) 

Definition: The resistance of the material having unit length and unit cross-sectional area is 

known as its specific resistance or resistivity. 

The Table 1.3 gives the values of resistivity of few common materials. 
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Key Point: A material having highest value of conductivity is the best conductor while 
with poorest value of conductivity is the best insulator. 

 

Material Resistivity in Ohm-metre at 20o (×10-8) 
Temperature coefficient at 20o  

(×10-4) 

Aluminum, commercial 2.8 40.3 

Brass 6-8 20 

Carbon  3000-7000 -5 

Lead  22  

Copper (annealed) 1.73 39.3 

German silver 

(84% Cu; 12% Ni; 4% Zn) 
20.2 2.7 

Gold  2.44 36.5 

Iron  9.8 65 

Manganin  

(84% Cu; 12% Mn; 4% Ni) 
44-48 0.15 

Mercury  95.8 8.9 

Nichrome 

(60% Cu; 25% Fe; 15% Cr)  
108.5 1.5 

Nickel 7.8 54 

Platinum 9-15.5 36.7 

Silver 1.64 38 

Tungsten 5.5 47 

Amber  5×1014  

Bakelite 1010  

Glass  1010-1012  

Mica  1015  

Rubber  1016  

 

1.8.1 Conductance (G) 
The conductance of any material is reciprocal of its resistance and ill denoted as G. It is the 

indication of ease with which current can flow through the material. It is measured in Siemens. 

So                                         𝐺 = 1
𝑅

= a
𝜌𝑙

=
1

𝜌
�a

𝑙
� = 𝜎 �a

𝑙
�                                    (1.7) 

1.8.2 Conductivity  

The quantity (1/ρ) is called conductivity denoted as σ (sigma). Thus the conductivity is the 

reciprocal of resistivity. It is measured in Siemens/m. 

 

 
Example 1.2: A coil consists of 2000 turns of copper wire having a cross-sectional 
area of 0.8 mm2. The mean length per turn is 80 cm and the resistivity of copper is 
0.02µΩ-m. Find the resistance of the coil? 
Solution: 

Length of the coil, l = 0.8 * 2000 = 1600 m 
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A = 0.8 mm2 = 0.8 * 10 – 6  m2. 
R = ρ (l / A) = 0.02 * 10 – 6  * 1600 / 0.8 * 10 – 6  = 40 Ω. 

Example 1.3: The resistance of copper wire 25 m long is found to be 50 Ω. If its diameter is 

1mm, calculate the resistivity of copper 

Solution:    l= 25 m,                     d = l mm,                         R =50Ω 

                      a =π/4(d2) = π/4(12) = 0.7853 mm2                       

                      𝛒 = 𝐑𝐚
𝒍

=  𝟓𝟎×𝟎.𝟕𝟖𝟓𝟑×𝟏𝟎−𝟔

𝟐𝟓
    = 1.57×10-6 Ω-m = 1.57 µΩ-m 

Example 1.4: A silver wire has resistance of 2.5 Ω. What will be the resistance of a manganin 

wire having a diameter, half of the silver wire and length one third? The specific resistance of 

manganin is 30 times that of silver.  

Solution:   Rs = silver resistance= 2.5 Ω,   dm= manganin diameter = ds/2 

             lm= manganin length=ls/3,         ρm= manganin specific resistance = 30 ρs     

Now     as =π/4(ds
2) =. area of cross section for silver 

                        𝑹𝒔 = 𝝆𝒔𝒍𝒔
𝐚𝒔

=  𝝆𝒔𝒍𝒔
𝝅
𝟒

(𝒅𝒔)𝟐
= 𝟐.𝟓 𝛀 

                        𝑹𝒎 = 𝝆𝒎𝒍𝒎
𝐚𝒎

=  
𝟑𝟎𝝆𝒔×�𝒍𝒔𝟑 �
𝝅
𝟒

(𝒅𝒎)𝟐
= 𝟏𝟎𝝆𝒔𝒍𝒔

𝝅
𝟒�

𝒅𝒔
𝟐 �

𝟐 

                          =  𝟒𝟎 𝝆𝒔𝒍𝒔
𝝅
𝟒

(𝒅𝒔)𝟐
= 𝟒𝟎𝑹𝒔 = 𝟏𝟎𝟎 𝛀       Resistance of manganin 

1.9 Effect of Temperature on Resistance 
        The resistance of the material affected as temperature 

of a material change.  As example, Atomic structure theory 

says that under normal temperature when the metal is 

subjected to potential difference, ions i.e. unmovable 

charged particles get formed inside the metal. The 

electrons which are moving randomly get aligned in a 

particular direction as shown in the fig. 1.3. If temperature 

increases, the ions gain energy and start oscillating about their mean position and cause 

collision and obstruction to the flowing electrons. Due to collision and obstruction due to 

higher amplitude of oscillations of ions, the resistance of material increases as temperature 

increases. But this is not true for all materials. In some cases the resistance decreases as 

temperature increase. 

Figure 1.3 Vibrating ions in conductor. 
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1.9.3 Effect of Temperature on Alloys 
The resistance of alloys increase as the temperature 

increase but rate of increase is not significant. In 

fact, some of alloys show almost no change in 

resistance for considerable change in the 

temperature like Manganin (alloy of copper, 

manganese and nickel), Eureka (alloy of copper and 

nickel) etc. Due to this property alloys are used to 

manufacture the resistance boxes. Fig.1.5 shows the 

effect of temperature on metals, insulating materials 

and alloys.  

 

1.9.4 Effect of Temperature on Semiconductors 
The materials having conductivity between that of 

metals and insulators are called semiconductors such 

as silicon, germanium etc. At absolute zero 

temperature, the semiconductors behave as perfect 

insulators.  

 For semiconductor materials, an increase in 

temperature will result in a decrease in the resistance 

level. Consequently, semiconductors have negative temperature coefficients. 

The thermistor and photoconductive cell are excellent examples of semiconductor devices with 

negative temperature coefficients. 

1.10 Resistance Temperature Coefficient (R.T.C.) 
From the discussion up till now we can conclude that the 

change in resistance is, 
1) Directly proportional to the initial resistance. 

2) Directly proportional to the change in temperature. 

3) Depends on the nature of the material whether it is a 

conductor, alloy or insulator.  

Let us consider a conductor, the resistance of which 

increases with temperature linearly. 

Let          R0= Initial resistance at 0 Co, R1= Resistance at t1 Co,      R2=Resistance at t2 Co 

Figure 1.5 effect of temperature on resistance. 

 

Figure 1.6 Effect of temperature on semiconductor. 

Figure 1.7 resistance vs. temperature. 
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As shown in the Fig. 1.7.   R2>R1> R0 

Definition of R.T.C.: The resistance temperature coefficient at t Co is the ratio of change in 

resistance per degree Celsius to the resistance at t Co. the unit of R. T.C. is 1/Co. 

From the Fig. 1.7, change in resistance = R2-R1,   change in temperature = t2-t1 

                              change in resistance per Co =  ∆𝑹
∆𝒕

=  𝑹𝟐−𝑹𝟏
𝒕𝟐−𝒕𝟏

 = the slope of graph 

Hence according to the definition of R.T.C. we can write α1 at t1 Co as, 

                                𝜶𝟏 = 𝒄𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝒓𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒑𝒆𝒓 𝑪𝒐

𝒓𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒂𝒕 𝒕𝟏 𝑪𝒐
=

�𝑹𝟐−𝑹𝟏 𝒕𝟐−𝒕𝟏� �

𝑹𝟏
 

 
1.10.1 Use of R.T.C. In Calculating Resistance at t Co 

Let              α0= R.T.C. at 0 Co,    R0 =Resistance at 0 Co,         Rt = Resistance at t Co 

Then           𝜶𝟎 =
�𝑹𝒕−𝑹𝟎 𝒕−𝟎� �

𝑹𝟎
= 𝑹𝒕−𝑹𝟎

𝒕𝑹𝟎
   ⟹   Rt = R0 (1+α0 t)                                  (1.8)                                                                                                

In general, above result can be expressed as 

                                           Rfinal= Rinitial [1+ αinitial Δt]                                         (1.9) 

1.10.2 Effect of Temperature on R.T.C. 

From the above discussion, it is clear that the value of R.T.C. also changes with the 

temperature. As the temperature increases, its value decreases. For any metal its value is 

maximize at 0 Co.  
If starting temperature is t1 = 0 Co and a at t Co i.e. αt is required then we can write, 

                                                                                                                        

                                                                                                                                                  (1.10) 

1.10.3 Effect of Temperature on Resistivity 
Similar to the resistance, the specific resistance or resistivity is a function of temperature. So 

similar to resistance temperature coefficient we can define temperature coefficient of resistivity 

as fractional change in resistivity per degree centigrade change in temperature from the given 

reference temperature. 

 if                    ρ1= resistivity at t1 Co,          ρ2= resistivity at t2 Co 

Then temperature coefficient of resistivity α at t1 Co can be defined as, 

                                                      𝜶𝒕𝟏 = (𝝆𝟐−𝝆𝟏) (𝒕𝟐−𝒕𝟏)⁄
𝝆𝟏

                                             (1.11) 

Similarly we can write the expression for resistivity at time t Co as, 

𝜶𝒕 =
𝜶𝟎

𝟏 + 𝜶𝟎(𝒕 − 𝟎) =
𝜶𝟎

𝟏 + 𝜶𝟎𝒕
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                                                                                                                                    (1.12) 

 

Example 1.5: A certain winding made up of copper has a resistance of 100 Ω at room 

temperature. If resistance temperature coefficient of copper at 0 Co is 0.00428/Co, calculate the 

winding resistance if temperature is increased to 50 Co. Assume room temperature as 25 Co. 

Solution:       t1=25Co,     R1=100 Ω,       t2= 50 Co,    α0= 0.00428/Co 

Now  

 

 

Use                        R2= R1 [1+ α1 (t2-t1)] = 100[1+0.003866(50-25)] 

                                   =109.6657 Ω                  resistance at 50 Co 

Example 1.6: A specimen of copper has a resistivity (ρ) and a temperature coefficient of 

1.6×10-6 ohm-cm at 0 Co and 1/254.5 at 20 Co respectively. Find both of them at 60 Co. 

Solution:        ρ0=1.6×10-6 ohm-cm = 1.6×10-8 ohm-m,                                at 20 Co 

Now      
 

                                                                      ⇒        1+20α0= 254.5 α0 

                                

                   
                             ρt= ρ0 (1+ α0t) 

 

 

1.11 Fundamental Quantities and Units 
          Scientists and engineers know that the terms they use, the quantities they measure must 

all be defined precisely. Such precise and standard measurements can be specified only if there 

is common system of indication of such measurements. This common system of unit is called 

'SI' system i.e. International System of Units. The SI system is divided into six base units and 

two supplementary units. The six fundamental or base units are length, mass, time, electric 

current, temperature, amount of substance and luminous intensity, see table 1.4. The two 

ρt= ρ0 (1+ α0t) 

ρt2= ρt1 [1+ αt1 (t2-t1)] 

 

𝜶𝒕 =
𝜶𝟎

𝟏 + 𝜶𝟎𝒕
 

𝜶𝟏 =
𝜶𝟎

𝟏 + 𝜶𝟎𝒕𝟏
=

𝟎. 𝟎𝟎𝟒𝟐𝟖

𝟏 + 𝟎. 𝟎𝟎𝟒𝟐𝟖 × 𝟐𝟓
=  𝟎. 𝟎𝟎𝟑𝟖𝟔𝟔 𝑪𝒐⁄  

𝜶𝟏 =
1

254.5
  /𝐶𝑜 

𝜶𝒕 =
𝜶𝟎

𝟏 + 𝜶𝟎𝒕
 𝜶𝟏 =

𝜶𝟎
𝟏 + 𝜶𝟎 × 𝟐𝟎

 

𝟏
𝟐𝟓𝟒.𝟓

=
𝜶𝟎

𝟏 + 𝟐𝟎𝜶𝟎
 

𝜶𝟎 = 𝟏
𝟐𝟑𝟒.𝟓

  /𝑪𝒐   at 0 Co   

𝜶𝟔𝟎 =
𝜶𝟎

𝟏 + 𝜶𝟎 × 𝟔𝟎
=

𝟏 𝟐𝟑𝟒. 𝟓⁄
𝟏 + 𝟔𝟎 𝟐𝟑𝟒. 𝟓⁄ =   

𝟏

𝟐𝟗𝟒. 𝟓
   /𝑪𝒐 

𝝆𝟔𝟎 = 𝟏. 𝟔 × 𝟏𝟎−𝟖 �𝟏 +  
𝟏

𝟐𝟑𝟒. 𝟓
× 𝟔𝟎� =   𝟐 × 𝟏𝟎−𝟖 𝛀 − 𝒎 
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supplementary units are plane angle and solid angle. All other units are derived which are 

obtained from the above two classes of units. The derived units are classified into three main 

groups.  

1. Mechanical units,   2. Electrical units,    3. Heat units  
TABLE 1.4 the six basic SI units. 

Quantity Basic unit Symbol 
Length meter m 
Mass kilogram kg 
Time second s 

Electric current ampere A 
Thermodynamic temperature kelvin K 

Luminous intensity candela cd 

1.11.1 Multiples and sub-multiples 
          One great advantage of the SI unit is that it uses prefixes based on the power of 10 to 

relate larger and smaller units to the basic unit. Table 1.5 shows the SI prefixes and their 

symbols. For example, the following are expressions of the same distance in meters (m):                                 

600,000,000 mm = 600,000 m = 600 km. 
TABLE 1.5 the SI prefixes. 
Multiplier Prefix Symbol 

1018 exa E 
1015 peta P 
1012 tera T 
109 giga G 
106 mega M 
103 kilo k 
102 hecto h 
10 deka da 

10−1 deci d 
10−2 centi c 
10−3 milli m 
10−6 micro μ 
10−9 nano n 
10−12 pico p 
10−15 femto f 
10−18 atto a 

 
 For American automobiles, engine power is rated in a unit called "horsepower," then  

                      1 Horsepower = 745.7 Watt 
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1.11.3 Electrical Units 
The various electrical units are, 

1. Electrical work: In an electric circuit, movement of electrons i.e. transfers of charge is an 

electric current. The electrical work is done when there is a transfer of charge. The unit of such 

work is Joule. 

So if V is potential difference in volts and Q is charge in coulombs then we can write, 

Electrical work = W  =V × Q   J         But        I= Q/t,  

    W =V.I.t     J          where    t = time in second                                       (1.21) 

2. Electrical power: The rate at which electrical work is done in an electric circuit is called an 

electrical power.  

Electrical power   = P = electrical work / time = W / t = V.I.t / t  

                                 P=V.I          J/sec i.e. watts                                                                  (1.22) 

Thus power consumed in an electric circuit is 1 wall if the potential difference of 1 volt applied 

across the circuit causes 1 ampere current to flow through it. 

3. Electrical energy: An electrical energy is the total amount of electrical work done in an 

electric circuit. 

Electrical energy = E = Power × Time = V.I.t   joules                                                        (1.23) 

The unit of energy is joule or watt-sec. 

          As watt-sec unit is very small, the electrical energy is measured in bigger units as watt-

hour (Wh) and kilo watt-hour (kWh). When a power of 1 kW is utilized for 1 hour, the energy 

consumed is said to be 1 kWh. This unit is called a Unit. 

1.11.5 Efficiency 

          The efficiency can be defined the ratio of energy output to energy input. It can be also 

expressed as ratio of power output to power input. Its value is always less than 1. Higher its 

value, more efficient is the system of equipment. Generally it is expressed in percentage, its 

symbol η. 

                                                                                                          (1.27) 

 

 

 

 

 

% η =       Energy output/ Energy input ×100 

        =       Power output/ power input × 100 
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Example 1.7: An electric pump lifts 60 m3 of water per hour to a height of 25 m. The 

pump efficiency is 82 % and the motor efficiency is 77 %. The pump is used for 3 hours 

daily. Find the energy consumed per week, if the mass of 1 - m3 of water is 1000 kg. 

Solution:   1 m 3 = 1000 kg  hence  m = 60 m3 = 60000 kg 

                  h = 25 m, ηm = 77 %, ηp = 82 %, time= 1 hour= 3600 sec 

Energy output   =   mgh =   60000 × 9.81×25 =14.715×106 J 

                 Pout =  energy
time

= 14.715×106

3600
 = 4087.5 W 

              Pin   = Pout
ηmηp

= 4087.5
0.82×0.77

 =  6473.7092 w 

Per day 3 hours running hence, 

Daily consumption= 6473.7092 × 3 = 19.421 kWh 

   Weekly power consumption   = 7 × 19.421 = 135.947 kWh 

   Weekly energy consumption   = 135.947×103 × 3600 = 489.4124×106 J 
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CHAPTER TWO 

Basic Laws 

2.1 Introduction           

 Chapter 1 introduced basic concepts in an electric circuit. To actually determine the values 

of these variables in a given circuit requires that we understand some fundamental laws that 

govern electric circuits. These laws, known as Ohm’s law and Kirchhoff’s laws, form the 

foundation upon which electric circuit analysis is built. In addition to these laws, we shall 

discuss some techniques commonly applied in circuit design and analysis.  

2.2 Network Terminology 

         In this section, we shall define some of the basic terms which are commonly 

associated with a network. 

1. Network: Any arrangement of the various, electrical energy source along with the 

different circuit elements is called an electrical network. Such a network is shown in the 

Fig. 2.1. 

2. Network Element: Any individual circuit element with two terminals which can be 

connected to other circuit element is called a network element. Network elements can be 

either active elements or passive elements.  

3. Branch: A part of the network which connects the various points of the network with one 

another is called a branch. In the Fig. 2.1, AB, BC, CD, DA, DE, CF and EF are the 

various branches. The branch may consist of more than one element. 

4. Junction Point: A point where three or more branches meet is called a junction point. 

Points D and C are the junction points in the network shown in the Fig. 2.1. 

5. Node: A point at which two or more elements are joined together is called node. The 

junction points are also the nodes of the network. In the network shown in the Fig. 2.1, A, 

B, C, D, E and F are the nodes of the network. 

6. Mesh (or Loop): Mesh (or Loops) is a set of branches forming a closed path in a network 

in such way that if one branch is removed then remaining branches do not form a closed 

path. In the Fig. 2.1 paths A-B-C-D-A, A-B-C-F-E-D-A, D-C-F-E-D etc are the loops of 

the network. 

          In this chapter, the analysis of d.c. circuits consisting of pure resistors and d.c. 

sources is included.                                  
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2.3 Classification of Electric Networks 

          The behavior of the entire network depends on the behavior and 

characteristics of its elements. Based on such characteristics electrical 

network can be classified as below, 

i) Linear Network: A circuit or network whose parameter i.e. elements are 

always constant irrespective of the change in time, voltage, temperature etc. 

is known as linear network.  

 

ii) Nonlinear Network: A circuit whose parameters change their values 

with change in time, temperature, voltage etc. is known as nonlinear 

network.  

 

iii) Active Network: A circuit whose contain at least one source of energy is called active. 

An energy source may be a voltage or current source.  

 

iv) Passive Network: A circuit which contains no energy source is called passive circuit. 

This is shown in the Fig 2.2. 

 
                                         (a)                                                   (b) 

Figure 2.2 (a) active network, (b) passive network 

 

 

 

 

 

 

Figure 2.1 an electrical 

network. 
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Key Point: Ohm’s law states that the voltage v across a resistor is directly proportional to 

the current i flowing through the resistor. 

2.4 OHM’S LAW 

          As shows in chapter one, the materials in general have a characteristic behavior of 

resisting the flow of electric charge. The resistance R of any material with a uniform cross-

sectional area A depends on A and its length l.   

The circuit element used to model the current-resisting behavior of a material 

is the resistor. For the purpose of constructing circuits, resistors are usually 

made from metallic alloys and carbon compounds. The circuit symbol for the 

resistor is shown in Fig. 2.3, where R stands for the resistance of the resistor. 

The resistor is the simplest passive element. Georg Simon Ohm (1787–

1854), a German physicist, is credited with finding the relationship 

between current and voltage for a resistor. This relationship is known as 

Ohm’s law. 

 

 

Ohm defined the constant of proportionality for a resistor to be the resistance; R. (The 

resistance is material property which can change if the internal or external conditions of the 

element are altered, e.g., if there are changes in the temperature.) Thus,  

                  v = iR                                                                                                                (2.1) 

The resistance R of an element denotes its ability to resist the flow of electric current; it is 

measured in ohms (Ω). 

Then          R = v/i                                                                                                            (2.2) 

so that        1 Ω= 1 V/A 

It should be pointed out that not all resistors obey Ohm’s law. A resistor that obeys Ohm’s 

law is known as a linear resistor. It has a constant resistance and thus its current-voltage 

characteristic is as illustrated in Fig. 2.4(a). A nonlinear resistor does not obey Ohm’s law. 

Its resistance varies with current and its i-v characteristic is typically shown in Fig. 2.4 (b). 

Examples of devices with nonlinear resistance are the light bulb and the diode. A useful 

quantity in circuit analysis is the reciprocal of resistance R, known as conductance and 

denoted by G: 

               G =1/R =i/v                                                                                                         (2.3) 

Figure 2.3 Circuit  

symbol for resistance. 
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 (a)         (b) 

Figure 2.4 The i-v characteristic of: (a) a linear resistor, (b) a nonlinear resistor. 

            The conductance is a measure of how well an element will conduct electric current. 

The unit of conductance is the mho (ohm spelled backward) or reciprocal ohm, with symbol 

Ʊ, the inverted omega. Although engineers often use the mhos, in this lectures we prefer to 

use the Siemens (S), the SI unit of conductance: 

               1 S = 1 Ʊ = 1 A/V                                                                          

Thus, 

Conductance is the ability of an element to conduct electric current; it is measured 

in mhos (Ʊ) or Siemens (S). 

From Eq. (2.3), we may write 

               i = Gv                                                                                                                   (2.4) 

The power dissipated by a resistor can be expressed in terms of R. Using Eqs. (1.23) and 

(2.1), 

               p = vi = i
2
R = v

2
/R                                                                                              (2.5) 

The power dissipated by a resistor may also be expressed in terms of G as 

               p = vi = v
2
G =i

2
/G                                                                                               (2.6) 

We should note two things from Eqs. (2.5) and (2.6): 

1. The power dissipated in a resistor is a nonlinear function of either current or voltage. 

2. Since R and G are positive quantities, the power dissipated in a resistor is always 

positive. Thus, a resistor always absorbs power from the circuit.  

2.4.1 Limitations of Ohm's Law 

The Limitations of the Ohm's law are, 

1) It is not applicable to the nonlinear devices such as diode, zener diode, voltage regulators. 

2) It does not hold good for non-metallic conductors such as silicon carbide. The law for 

such conductors is given by,         V = kI
m

              where k, m are constants. 
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EXAMPLE 2.1: An electric iron draws 2 A at 120 V. Find its resistance. 

Solution: 

From Ohm’s law,             R = v/i =120/2 = 60 Ω 

EXAMPLE 2.2: In the circuit shown below, calculate the current i, the conductance G, 

and the power P. 

 Solution: 

The voltage across the resistor is the same as the source voltage (30 V) 

because the resistor and the voltage source are connected to the same 

pair of terminals. Hence, the current is 

               i = v / R = 30 ×5 × 10
3
 = 6 mA 

The conductance is            G = 1/ R = 1/ 5 × 10
3
 = 0.2 mS 

We can calculate the power in various ways using either Eqs. (1.29), (2.5), or (2.6). 

               p = vi = 30× (6 × 10−
3
) = 180 mW 

PRACTICE PROBLEM 2.1: For the circuit shown below, calculate the voltage v, the 

conductance G, and the power p. 

 Answer:  20 V, 100 μS, 40 mW. 

2.5 SERIES RESISTORS  

 A series circuit is one in which several resistances 

are connected one after the other. There is only one 

path for the flow of current. Consider the 

resistances shown in the Fig. 2.5. The resistance R1, 

R2 and R3, said to be in series.                                                                     

Req= Equivalent resistance of the circuit. 

                                                Req = R1 + R2 + R3 

i.e. total or equivalent  resistance of the series circuit is arithmetic sum of the resistances 

connected in series.  

For N resistances in series,    R = R1 + R2 + R 3 + …+ RN                                                (2.7)  

If          R1 = R2 = · · · = RN = R, then 

                                                     Req= N×R                                                                      (2.8) 

 

Fig. 2.5 series circuit 
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2.5.1 Characteristics of Series Circuits 

1) The same current flows through each resistance. 

2) The supply voltage V is the sum of the individual voltage drops across the resistances. 

                                               V= V1 + V2 + V3 + …+ VN                                                 (2.9) 

3) The equivalent resistance is equal to the sum of the individual resistances. 

4) The equivalent resistance is the largest of all the individual resistances. 

i.e.                                         R > R1, R > R2, ... R > RN 

2.6 PARALLEL RESISTORS  

          The parallel circuit is one in which several resistances 

are connected across one another in such a way that one 

terminal of each is connected to form a junction point while 

the remaining ends are also joined to form another junction 

point. Consider a parallel circuit shown in the Fig. 2.6.                                                                                                                                                    

Req= Total or equivalent resistance of the circuit, 

                  
 

   
   

 

  
 

 

  
 

 

  
 

In general if 'N' resistances are in parallel, 

                  
 

 
   

 

  
 

 

  
 

 

  
   

 

  
                                                    (2.10) 

Note that Req is always smaller than the resistance of the smallest resistor in the parallel 

combination. If R1 = R2 = · · · = RN = R, then 

                   Req =R/N                                                                                                       (2.11) 

Conductance (G): 

It is known that, 1/R = G (conductance) hence, 

                    G=G1+G2+G3+…+GN                                                                                 (2.12)          

Important result: 

Now If N = 2, two resistance are in parallel then,. 

                   
 

 
   

 

  
 

 

  
 or      

    

     
                                                               (2.13) 

2.6.1 Characteristics of Parallel Circuits 

1) The same potential difference gets across all the resistances in parallel. 

Fig. 2.6 A parallel circuit. 
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2) The total current gets divided into the number of paths equal to the number of resistances 

in parallel. The total current is always sum of the individual currents. 

3) The reciprocal of the equivalent resistance of a parallel circuit is equal to the sum of the 

reciprocal of the individual resistances. 

4) The equivalent resistance is the smallest of all the resistances R < R1, R<R2, R<RN.                       

5) The equivalent conductance is the arithmetic addition of the individual conductances. 

          In general, it is often convenient and possible to combine resistors in series and 

parallel and reduce a resistive network to a single equivalent resistance Req.  

Example 2.3:  Find Req for the circuit shown in Fig. 1. 

To get Req, we combine resistors in series and in parallel. The 6-Ω 

and 3-Ω resistors are in parallel, so their equivalent resistance is 

              6 Ω || 3 Ω = 6 × 3/ (6 + 3) = 2 Ω 

(The symbol || is used to indicate a parallel combination.) Also, the 

1-Ω and 5-Ω resistors are in series; hence their equivalent 

resistance is                                                                                                                                                            

             1 Ω + 5 Ω = 6 Ω 

Thus the circuit in Fig. 1 is reduced to that in Fig. 2(a). In Fig. 

2(a), we notice that the two 2-Ω resistors are in series, so the 

equivalent resistance is 

             2 Ω + 2 Ω = 4 Ω 

This 4-Ω resistor is now in parallel with the 6-Ω resistor in Fig. 2 

(a); their equivalent resistance is 

            4 Ω || 6 Ω = 4 × 6/ (4 + 6) = 2.4 Ω 

The circuit in Fig. 2 (a) is now replaced with that in Fig. 2 (b). In Fig. 2 (b), the three 

resistors are in series. Hence, the equivalent resistance for the circuit is                                                                                              

             Req = 4 Ω + 2.4 Ω + 8 Ω = 14.4 Ω 

PRACTICE PROBLEM 2.2: By combining the resistors in Figure below, find Req. 

Answer: 6 Ω. 

 

 

 

Figure 1 

Figure 2 
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Figure 2.7 Short circuit (Rsc = 0) 

Key Point: The current through open circuit is always zero though there exist voltage across 

open circuited terminals. 

Figure 2.8 Open circuit (ROC =∞). 

PRACTICE PROBLEM 2.3: Find the conductance Geq for 

the circuit in Figure below. 

Answer: 10 S. 

2.7 Short and Open Circuits 

          In the network simplification, short circuit or open circuit existing in the network 

plays an important role. Since the value of R can range from zero to infinity, it is important 

that we consider the two extreme possible values of R. 

2.7.1 Short Circuit 

          When any two points in a network are joined directly to each other with a thick 

metalic conducting wire the two points are said to be short circuited. The resistance of such 

short circuit is zero. 

 The part of the network, which is short circuited, is shown in the 

Fig. 2.7. The points A and B are short circuited. The resistance 

of the branch AB is Rsc=0. The Current IAB is flowing through 

the short circuited path. According to Ohm's law,    

                 VAB= Rsc × IAB = 0 × IAB= 0 V 

     

 

2.7.2 Open Circuit 

          When there is no connection between the two points of a network, having some 

voltage across the two points then the two points are said to be open circuited. 

As there is no direct connection in an open circuit, the 

resistance of the open circuit is ∞.  The part of the network 

which is open circuited is shown in the Fig. 2.8. The points A 

and B are said to be open circuited. The resistance of the branch                        

AB is ROC = ∞ Ω.   

 

According to Ohm's law, 

IOC= VAB/ ROC = VAB/ ∞ = 0 A 

 

 

Key Point: The voltage across short circuit is always zero though current flows through the short 

circuited path. 
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2.8 The Voltage-divider and Current-divider Circuits 

2.8.1 The voltage-divider circuit  

Voltage-divider circuit, shown in Fig.2.9. We 

analyze this circuit by directly applying Ohm's law 

and Kirchhoff's laws. To aid the analysis we 

introduce the current i as shown in Fig.2.9 (b). From 

Kirchhoff's current law R1 and R2, carry the same 

current. Applying Kirchhoff's voltage law around 

the closed loop yields 

               vs = i R1 + i R2 , 

Now we can use Ohm's law to calculate v l and, v2: 

                    
     

        
          

     

        
                                                                       (2.14) 

In general, if a voltage divider has N resistors (R1, R2, . . . , RN) in series with the source 

voltage vs, the Nth resistor (RN) will have a voltage drop of 

                     
     

                 
 

     

   
                                                                (2.15) 

2.8.2 The current-divider circuit 

          The current-divider circuit shown in Fig. 2.10. The 

current divider is designed to divide the current is between 

R1 and R2.  We find the relationship between the current is, 

and the current in each resistor (that is, i1 and i2) by directly 

applying Ohm's law and Kirchhoff's current law. The 

voltage across the parallel resistors is 

               v= i1R1= i2R2   
     

        
   

                   
     

        
             

     

        
                                                         (2.16) 

If we divide both the numerator and denominator by R1R2, Eq. (2.16) become 

                  
     

        
             

     

        
                                                              (2.17) 

Figure 2.9 (a) A voltage-divider circuit and (b) 

The voltage-divider circuit with current i indicated 

 

Figure2.10 the current-divider circuit. 
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          Thus, in general, if a current divider has N conductors (G1, G2, . . . , GN) in parallel 

with the source current i, the nth conductor (GN) will have current 

                  
     

             
   

      

   
                                                                (2.18) 

EXAMPLE 2.4: Find io and vo in the circuit shown in Fig. 1(a). Calculate the power 

dissipated in the 3-Ω resistor. 

Solution:  The 6-Ω and 3-Ω resistors are in parallel, so their 

combined resistance is 

               6 Ω || 3 Ω = 6 × 3/ (6 + 3) = 2 Ω 

By apply voltage division, since the 12 V in Fig. 1(b) is 

divided between the 4-Ω and 2-Ω resistors. Hence, 

      vo =2(12 V)/(2 + 4) = 4 V 

Apply current division to the circuit in Fig. 1(a) now that we 

know i, by writing 

               i = 12/ 4 + 2 = 2 A 

               io = 6 i /(6 + 3) = 4 /3 A 

The power dissipated in the 3-Ω resistor is 

              po = vo io = 4(4/3) = 5.333 W 

PRACTICE PROBLEM 2.4: Find v1 and v2 in the circuit shown in Figure below. Also 

calculate i1 and i2 and the power dissipated in the 12-Ω and 40-Ω resistors. 

Answer: v1 = 5 V, i1 = 416.7 mA, p1 = 2.083 W, v2 = 10 V, i2 = 250 mA, p2 = 2.5 W. 

 

 

 

 

 

 

 

 

 

      Figure 1(a) Original circuit,  

       (b) Its equivalent circuit. 
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2.9 WYE-DELTA TRANSFORMATIONS 

          Situations often arise in circuit analysis when the 

resistors are neither in parallel nor in series. For example, 

consider the bridge circuit in Fig. 2.11. How do we combine 

resistors R1 through R6 when the resistors are neither in series 

nor in parallel? Many circuits of the type shown in Fig. 2.11 

can be simplified by using three-terminal equivalent networks.   

These are the wye (Y) or tee (T) network shown in Fig. 2.12 and 

the delta (Δ) or pi (π) network shown in Fig. 2.13.                  

 

Figure 2.12 Two forms of the same network: (a) Y, (b) T. 

 

Delta to Wye Conversion 

          Suppose it is more convenient to work with a wye network in a place where the 

circuit contains a delta configuration. We superimpose a wye network on the existing delta 

network and find the equivalent resistances in the wye network. For terminals 1 and 2 in 

Figs. 2.12 and 2.13, for example, R12(Y) = R1 + R3,   R12 (Δ) = Rb || (Ra + Rc)          (2.19) 

Setting R12(Y) = R12 (Δ) gives 

                
            

            
   

                 
            

            
                                  

            

            
                     (2.20) 

By solving previous equations, we get 

                   
      

            
                                                                                         (2.21) 

                   
      

            
                                                                                         (2.22) 

                   
      

            
                                                                                         (2.23)     

Figure 2.11The bridge network. 

Figure 2.13 Two forms of the 

same network: (a) Δ, (b) π. 
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Wye to Delta Conversion 

          Reversing the Δ-to-Y transformation also is possible. That is, we can start with the Y 

structure and replace it with an equivalent Δ structure. The expressions for the three Δ-

connected resistors as functions of the three Y-connected resistors are 

                   
                  

  
                                                                                (2.24) 

                   
                  

  
                                                                                (2.25) 

                   
                  

  
                                                                                 (2.26) 

The Y and Δ networks are said to be balanced when 

               R1 = R2 = R3 = RY, Ra = Rb = Rc = RΔ                                                        (2.27) 

Under these conditions, conversion formulas become 

               RY =RΔ/ 3 or  RΔ = 3RY                                                                                 (2.28) 

EXAMPLE 2.5:  Obtain the equivalent resistance Rab for the circuit in Fig. 1 and use it to 

find current i. 

Solution:   

          In this circuit, there are two Y-networks and one Δ-

network. Transforming just one of these will simplify the 

circuit. If we convert the Y-network comprising the 5-Ω, 10-

Ω, and 20-Ω resistors, we may select 

    R1 = 10 Ω,   R2 = 20 Ω,   R3 = 5 Ω                                                             

Thus, from Eqs. (2.24) to (2.26) we have 

                   
                  

  
 

               

  
 

   

  
                           

                   
                  

  
 

   

  
         

                   
                  

  
 

   

 
       

          With the Y converted to Δ, the equivalent circuit (with the voltage source removed for 

now) is shown in Fig. 2 (a). Combining the three pairs of resistors in parallel, we obtain 

               70 || 30 =70 × 30/ (70 + 30) = 21 Ω 

               12.5 || 17.5 =12.5 × 17.5/ (12.5 + 17.5) = 7.2917 Ω 

               15 || 35 =15 × 35/ (15 + 35) = 10.5 Ω 

Figure 1. 
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so that the equivalent circuit is shown in Fig. 2 (b). Hence, we find 

               Rab = (7.292 + 10.5) || 21 =17.792 × 21/ (17.792 + 21) = 9.632 Ω 

Then 

               i = vs/ Rab =120/ 9.632 = 12.458 A 

 

Figure 2 Equivalent circuits to Fig. 1, with the voltage removed. 

PRACTICE PROBLEM 2.5:  For the bridge network in Figure below, find Rab and i. 

Answer: 40 Ω, 2.5 A. 

 

 

2.10 Energy Sources 

          There are basically two types of energy sources; voltage source and current source. 

These sources are classified as i) Ideal source and ii) Practical source. Let us see the 

difference between Ideal and practical sources. 

2.10.1 Voltage Source 

*Ideal voltage source:           

          Ideal voltage source is defined as the energy source which gives constant voltage 

across its terminals irrespective of the current drawn through its terminals. This is indicated 

by V- I characteristics shown in the Fig. 2.14 (b). 

*Practical voltage source: 

         But practically, every voltage source has small internal resistance shown in series with 

voltage source and is represented by Rse as shown in the Fig. 2.15. Because of the Rse, voltage 

across terminals decreases slightly with increase in current and it is given by expression, 

VL= VS – IL RL 
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Voltage sources are further classified as follows, 

i) Time invariant Sources: 

          The sources in which voltage is not varying with time are known as time invariant 

voltage source or D.C. sources. These are denoted by capital letters. Such a source is 

represented in the Fig. 2.16 (a).   

ii) Time Variant Source:  

The sources in which voltage is varying with time are known as time variant voltage sources 

or A.C. sources. These are denoted by small letters. This is shown in the Fig. 2.16 (b). 

 

             

 

 

2.10.2 Current Source 

*Ideal current source:           

          Ideal current source is the source which gives constant current at its terminals 

irrespective of the voltage appearing across its terminal. This is explained by V-I 

characteristics shown in the Fig. 2.17 (b).    

*Practical current source: 

          But practically, every current source has high internal resistance, shown in parallel 

with current source and It is represented by Rsh. This is shown in the Fig. 2.18. Because of 

Rsh, current through its terminals decreases slightly with voltage at its terminals. 

(a) circuit              (b) characteristics 

Figure 2.15 Practical voltage source. 

(a) symbol              (b) characteristics 

Figure 2.14 Ideal voltage source. 

Figure 2.16 (a) D.C. sources. Figure 2.16(b) A.C. source. 
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Figure 2.19 (a) D.C. source. 

(a)  circuit       (b) characteristics 

Figure 2.18 ideal current source. 

(a) symbol            (b) characteristics 

Figure 2.17 ideal current source. 

       Fig. 2.19 (b) A.C. source. 

 

                                                               

 

Similar to voltage sources, current sources are classified as follows, 

i) Time Invariant Sources: 

          The sources in which current is not varying with time are known as time invariant 

current sources or D.C. sources. These are denoted by capital letters. Such a current source 

is represented in the Fig. 2.19 (a).           

ii) Time Variant Sources: 

           The sources in which current is varying with time are known as time variant current 

sources or A.C. sources. These are denoted by small letters. Such source is represented in 

the Fig. 2.19 (b). 

      

           

 

 

The sources, which are discussed above are independent sources because these sources does 

not depend on other voltage or currents in the network for their value. These are represented 

by a circle with a polarity of voltage or direction of current indicated inside 

 2.10.3 Dependent Sources 

  Dependent source are those whose value of source depends on voltage or current in the 

circuit. Such sources are indicated by diamond as shown in the Fig. 2.20 and further 

classified as, 

i) Voltage-Controlled Voltage Source (VCVS): It produces a voltage as a function of 

voltage elsewhere in the given circuit. It is shown in the Fig. 2.20 (a). The controlling 

voltage is named vx the equation that determines the supplied voltage vs is 

               vs = µ vx,  and the reference polarity for vs is as indicated. Note that µ is a 

multiplying constant that is dimensionless. 
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ii) Current-Controlled Voltage Source (CCVS): It produces voltage as a function of 

current elsewhere in the given circuit. It is shown In the Fig. 2.20(b). the controlling current 

is ix the equation for the supplied voltage vs is  vs = ρ ix,  

the reference polarity is as shown and the multiplying constant ρ has the dimension volts per 

ampere 

iii) Voltage-Controlled Current Source (VCCS): It produces current as a function of 

voltage elsewhere in the given circuit. It is shown in the Fig. 2.20(c). The controlling 

voltage is vx, the equation for the supplied current is is   is =α vx,         

the reference direction is as shown and the multiplying constant α has the dimension 

amperes per volt. 

iv) Current-Controlled Current Source (CCCS): It produces current as a function of 

current elsewhere in the given circuit. It is shown in the Fig. 2.20 (d). the controlling current 

is ix the equation for the supplied current is is   is = β ix,       

the reference direction is as shown, and the multiplying constant β is dimensionless. 

                                     

                            (a)                         (b)                       (c)                           (d) 

Figure 2.20 The circuit symbols a) an ideal dependent voltage-controlled voltage source, (b) an ideal dependent 

current-controlled voltages source, (c) an ideal dependent voltage-controlled current source (d) an ideal 

dependent current-controlled current source.  

        Dependent sources are useful in modeling elements such as transistors, operational 

amplifiers and integrated circuits. An example of a current controlled voltage source is 

shown on the right-hand side of Fig. 2.21, where the voltage 10i of the voltage source 

depends on the current i through element C.  

 
Figure 2.21 the source on the right-hand side is a current-controlled voltage source. 
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Key Point: the voltage sources to be connected in series must have same current 

rating through their voltage ratings may be same or different. 

Key Point: the voltage sources to be connected in parallel must have same voltage rating through 

their current ratings may be same or different. 

Figure 2.22 Figure 2.23 

2.11 Combinations of Sources 

          In a network consisting of many sources, series and parallel combinations of sources 

exist. If such combinations are replaced by the equivalent source then the network 

simplification becomes much easier. Let us consider such series and parallel combinations 

of energy sources. 

2.11.1 Voltage Sources in Series 

If two voltage sources are in series then the equivalent is dependent on the polarities of the 

two sources. Consider the two sources as shown in the Fig. 2.22. 

 

 

 

        

 

 

If the polarities of the two sources are same then the equivalent single source is the addition 

of the two sources with polarities same as that of the two sources. 

Consider the two sources as shown in the Fig. 2.23. If the polarities of the two sources are 

different then the equivalent single source is the difference between the two voltage sources. 

The polarity of such source is same as that of the greater of the two sources. 

 

                                                                           

2.11.2 Voltage Sources in Parallel 

Consider the two voltage source in parallel as shown in 

the Fig. 2.24. The equivalent single source has a value 

same as Vl andV2. It must be noted that all the open 

circuit voltage provided by each source must be equal as 

the sources are in parallel.                                                                       

 

2.11.3 Current Sources in Series 

Consider the two current sources in series is shown in the Fig. 2.25, the equivalent single 

source has a value same as I1 and I2. 

Figure 2.24 
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Key Point: the current sources to be connected in series must have same current rating through 

their voltage ratings may be same or different. 

Key Point: the current sources to be connected in parallel must have same voltage rating through 

their current ratings may be same or different. 

Figure 2.27 

 

                  

 

 

 

2.11.4 Current Sources in Parallel 

Consider the two current sources in parallel as shown in the Fig. 2.26. 

 

 

 

 if the directions of the currents of the sources connected in parallel are same then the 

equivalent single source is the addition of the two sources with direction same as that of the 

two sources. 

Consider the two current sources with opposite directions connected in parallel as shown in 

the Fig. 2.27. If the directions of the two sources are different then the equivalent single 

source has a direction same as greater of the two sources with value equal to the difference 

between the two voltage sources.  

 

 

2.12 NOTATION:  it will play an increasingly important role in the analysis.  

i) Double-Subscript Notation 

          The fact that voltage is an across variable and exists between two points has resulted 

in a double-subscript notation that defines the first subscript as the higher potential. In Fig. 

2.28(a), the two points that define the voltage across the resistor R are denoted by a and b. 

Since a is the first subscript for Vab, point a must have a higher potential than point b if Vab 

is to have a positive value. If, in fact, point b is at a higher potential than point a, Vab will 

have a negative value, as indicated in Fig. 2.28(b). 

Figure 2.26 

Figure 2.25 
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Figure 2.28 defining the sign for double-subscript notation. 

In summary: 

The voltage Vab is the voltage at point a with respect to (w.r.t.) point b. 

ii) Single-Subscript Notation 

          If point b of the notation Vab is specified as ground potential (zero volts), then a 

single subscript notation can be employed that provides the voltage at a point with respect to 

ground.  

          In Fig. 2.29, Va is the voltage from point a to 

ground. In this case it is obviously 10 V since it is 

right across the source voltage E. The voltage Vb is 

the voltage from point b to ground. Because it is 

directly across the 4-Ω resistor, Vb = 4 V. 

Figure 2.29 defining the use of single-subscript  

                notation for voltage levels. 

In summary: 

The single-subscript notation Va specifies the voltage at point a with respect to ground (zero 

volts). If the voltage is less than zero volts, a negative sign must be associated with the magnitude 

of Va . 

General Comments 

A particularly useful relationship can now be established that will have extensive 

applications in the analysis of electronic circuits. For the above notational standards, the 

following relationship exists: 

               Vab = Va - Vb                                                                                                        (2.29) 

In other words, if the voltage at points a and b is known with respect to ground, then the 

voltage Vab can be determined using Eq. (2.29). In Fig. 2.29, for example, 

          Vab = Va - Vb = 10 V- 4 V = 6 V 

2.13 KIRCHHOFF’S LAWS 

          Ohm’s law by itself is not sufficient to analyze circuits. However, when it is coupled 

with Kirchhoff’s two laws, we have a sufficient, powerful set of tools for analyzing a large 
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variety of electric circuits. Kirchhoff’s laws were first introduced in 1847 by the German 

physicist Gustav Robert Kirchhoff (1824–1887). These laws are formally known as 

Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL).  

2.13.1 Kirchhoff’s current law 

Kirchhoff’s current law (KCL) states that the algebraic sum of currents entering a 

node (or a closed boundary) is zero or the sum of the currents entering a node is equal to 

the sum of the currents leaving the node.  

Mathematically, KCL implies that 

                ∑   
 
   = 0                                                                                                       (2.30) 

 where N is the number of branches connected to the node and in is the nth current entering 

(or leaving) the node.  

Consider the node in Fig. 2.30. Applying KCL gives 

                i1 + (−i2) + i3 + i4 + (−i5) = 0                                                                             (2.31) 

since currents i1, i3, and i4 are entering the node, while currents i2 and i5 are leaving it. By 

rearranging the terms, we get 

               i1 + i3 + i4 = i2 + i5                                                                                              (2.32) 

                            

Figure 2.30 Currents at a node illustrating KCL.         

       A simple application of KCL is combining current 

sources in parallel. The combined current is the algebraic 

sum of the current supplied by the individual sources. For 

example, the current sources shown in Fig. 2.31(a) can be 

combined as in Fig. 2.31(b). The combined or equivalent 

current source can be found by applying KCL to node a. 

                 IT + I2 = I1 + I3      
or                                                                                          

                                                                                                                         

3+ I 2I − 1= I TI                 

Figure 2.31 Current sources in parallel:  

(a) original circuit, (b) equivalent circuit. 
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A circuit cannot contain two different currents, I1 and I2, in series, unless I1 = I2; otherwise 

KCL will be violated. 

2.13.2 Kirchhoff’s voltage law 

Kirchhoff’s second law is based on the principle of conservation of energy: 

Kirchhoff’s voltage law (KVL) states that the algebraic sum of all voltages around a 

closed path (or loop) is zero.  

Expressed mathematically, KVL states that 

               ∑   
 
   = 0                                                                                                    (2.33) 

Where M is the number of voltages in the loop (or the number of branches in the loop) and 

vm is the mth voltage. 

          To illustrate KVL, consider the circuit in Fig. 2.32. The sign on each voltage is the 

polarity of the terminal encountered first as we travel around the loop. We can start with any 

branch and go around the loop either clockwise or counterclockwise. Suppose we start with 

the voltage source and go clockwise around the loop as shown; then voltages would be -v1 , 

+v2, +v3, −v4, and +v5, in that order. For example, as we reach branch 3, the positive 

terminal is met first; hence we have+v3. For branch 4, we reach the negative terminal first; 

hence, −v4. Thus, KVL yields 

               − v1 + v2 + v3 − v4 + v5 = 0                                                                                (2.34) 

Rearranging terms gives   

                v2 + v3 + v5 = v1 + v4                                                                                        (2.35) 

which may be interpreted as 

               Sum of voltage drops = Sum of voltage rises                                                 (2.36) 

This is an alternative form of KVL. Notice that if we had 

traveled counterclockwise, the result would have been +v1, 

−v5, +v4, −v3, and −v2, which is the same as before, except 

that the signs are reversed. Hence, Eqs. (2.34) and (2.35) 

remain the same. 

When voltage sources are connected in series, KVL can be 

applied to obtain the total voltage. The combined voltage is 

the algebraic sum of the voltages of the individual sources.  

Figure 2.32 A single-loop circuit  

illustrating KVL. 
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2.13.3 Steps to Apply Kirchhoff. Laws to Get Network Equations 

The steps are stated based on the branch current method. 

Step 1: Draw the circuit diagram from the given information and insert all the value of 

sources with appropriate polarities and all the resistances. 

Step 2: Mark all the branch currents with assumed directions using KCL at various nodes 

and junction points. Kept the number of unknown currents as minimum as far as possible to 

limit the mathematical calculations required to solve them later on. Assumed directions may 

be wrong; in such case answer of such current will be mathematically negative which 

indicates the correct direction of the current.  

Step 3: Mark all the polarities of voltage drops and rises as per directions of the assumed 

branch currents flowing through various branch resistance of the network. This is necessary 

for application of KVL to various closed loops. 

Step 4: Apply KVL to different closed paths in the network and obtain the corresponding 

equations. Each equation must contain some element which is not considered in any 

preview equation. 

2.14 Solving Simultaneous Equations and Cramer's Rule 

          Electric circuit analysis with the help of Kirchhoff’s laws usually involves solution of 

two or three simultaneous equations. These equations can be solved by a systematic 

elimination of the variables but the procedure is often lengthy and laborious and hence more 

liable to error.  Determinants and Cramer’s rule provide a simple and straight method for 

solving network equations through manipulation of their coefficients.  Of course, if the 

number of simultaneous equations happens to be very large, use of a digital computer can 

make the task easy.  Let us assume that set of simultaneous equations obtained is, as 

follows, 

 

where C1, C2, ………, Cn constants. Then Cramer's rule says that form a system 

determinant Δ or D as, 

a11 x1+ a12 x2+………….+ a1n xn= C1 

a21 x1+ a22 x2+………….+ a2n xn= C2 

                                                          . 

                                                          . 

an1 x1+ an2 x2+…………+ ann xn= Cn 
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  [

            

                

             

             

]    

          Then obtain the subdeterminant Dj by replacing j
th

 column of Δ by the column of 

constants existing on right hand side of equations i.e. C1, C2, .... Cn; 

            [

           

               

             

            

] ,               [

           

               

             

            

] 

and                                           [

           

                

            

            

] 

The unknowns of the equations are given by Cramer's rule as,  

   
  

 
        

  

 
      

  

 
 

Where D1, D2, …, Dn and D are values of the respective determents 

Example 2.6: Apply Kirchhoff's laws to the circuit shown in figure 1 below Indicate the 

various branch currents. 

Write down the equations relating the various branch currents. 

Solve these equations to find the values of these currents. 

Is the sign of any of the calculated currents negative? 

If yes, explain the significance of the negative sign. 

Solution: Application Kirchhoff's laws:                                                              Figure 1 

Step 1and 2: Draw the circuit with all the values which are same as the given network. 

Mark all the branch currents starting from +ve of any of the source, say +ve of 50 V source 

Step 3: Mark all the polarities for different voltages across the resistance. This is combined with 

step 2 shown in the network below in Fig. 1 (a). 

 

Figure 1 (a) 
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Step 4: Apply KVL to different loops. 

Loop 1: A-B-E-F-A,       –15 I1 – 20 I2+ 50 = 0 

Loop 2: B-C-D-E-D,      – 30 (I1 – I2) – 100 +20 I2= 0 

Rewriting all the equations, taking constants on one side, 

               15 I1 + 20 I2 = 50,             –30 I1 +50 I2 = 100 

Apply Cramer's rule,      |
    
     

|       

Calculating D1,                |
    
     

|      

    
  

 
 

   

    
        

Calculating D2,                |
    
      

|       

    
  

 
 

    

    
        

For I1 and I2 as answer is positive, assumed direction is correct. 

For I1 answer is 0.37 A. For I2 answer is 2.22 A 

               I1 –I2 = 0.37 – 2.22 = – 1.85 A 

Negative sign indicates assumed direction is wrong. 

i.e. I1 – I2 = 1.85 A flowing in opposite direction to that of the assumed direction. 

Practice problem 2 .6:  Find the currents and voltages in the circuit shown below. 

Answer: v1 = 3 V, v2 = 2 V, v3 = 5 V, i1 = 1.5 A, i2 = 0.25 A, i3 =1.25 A. 

 

 

 

 

 

 

2.15 SOURCE TRANSFORMATION 

          We have noticed that series-parallel combination and wye-delta transformation help 

simplify circuits. Source transformation is another tool for simplifying circuits. We can 

substitute a voltage source in series with a resistor for a current source in parallel with a 

resistor, or vice versa, as shown in Fig. 2.33. Either substitution is known as a source 

transformation.  
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Key Point: A source transformation is the process of replacing a voltage source vs in 

series with a resistor R by a current source is in parallel with a resistor R, or vice versa. 

 

Figure 2.33 Transformation of independent sources. 

 

           

          We need to find the relationship between vs and is that guarantees the two 

configurations in Fig. 2.33 are equivalent with respect to nodes a, b.  

   Suppose RL, is connected between nodes a, b in Fig.2.33(a). Using Ohms law, the current 

in RL is. 

                   
  

      
                  R and RL in series                                                       (2.37) 

If it is to be replaced by a current source then load current must be 
 

      
             

        Now suppose the same resistor RL, is connected between nodes a, b in Fig. 4.4 (b). 

Using current division, the current in RL, is 

                    
 

      
                                                                                                  (2.38) 

          If the two circuits in Fig. 4.4 are equivalent, these resistor currents must be the same. 

Equating the right-hand sides of Eqs.4.5 and 4.6 and simplifying 

                  
  

 
                                                                                                (2.39) 

Source transformation also applies to dependent sources, provided we carefully handle the 

dependent variable.As shown inFig.2.34, a dependent voltage source in series with a resistor 

can be transformed to a dependent current source in parallel with the resistor or vice versa.  

 

Figure 2.34 Transformation of dependent sources. 

     However, we should keep the following points in mind when dealing with source 

transformation. 
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Figure 2.36 Figure 2.37        

1. Note from Fig. 2.33 (or Fig. 2.34) that the arrow of the current source is directed toward 

the positive terminal of the voltage source. 

2. Note from Eq. (2.39) that source transformation is not possible when R = 0, which is the 

case with an ideal voltage source. However, for a practical, nonideal voltage source, R ≠ 0. 

Similarly, an ideal current source with R =∞cannot be replaced by a finite voltage source.  

Example 2.7: Use source transformation to find vo in the circuit in Fig. 2.35. 

Solution: 

          We first transform the current and voltage sources to obtain the circuit in Fig. 2.37(a). 

Combining the 4-Ω and 2-Ω resistors in series and transforming the 12-V voltage source 

gives us Fig. 2.37(b). We now combine the 3-Ω and 6-Ω resistors in parallel to get 2-Ω. We 

also combine the 2-A and 4-A current sources to get a 2-A source. Thus, by repeatedly 

applying source transformations, we obtain the circuit inFig.2.37 (c).                                                                                                   

  

 

 

Alternatively, since the 8-Ω and 2-Ω resistors in Fig. 2.37(c) are in parallel, they have the 

same voltage vo across them. Hence, 

vo = (8||2)(2 A) = 
   

  
 (2) = 3.2 V 
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CHAPTER THREE 

METHODS OF ANALYSIS 

3.1 INTRODUCTION 

          Having understood the fundamental laws of circuit theory (Ohm’s law and 

Kirchhoff’s laws), we are now prepared to apply these laws to develop two powerful 

techniques for circuit analysis: nodal analysis, which is based on a systematic application of 

Kirchhoff’s current law (KCL), and mesh analysis, which is based on a systematic 

application of Kirchhoff’s voltage law (KVL). The two techniques are so important that this 

chapter should be regarded as the most important in the lectures.  

3.2 NODAL ANALYSIS 

          Nodal analysis provides a general procedure for analyzing circuits using node 

voltages as the circuit variables. Choosing node voltages instead of element voltages as 

circuit variables is convenient and reduces the number of equations one must solve 

simultaneously. To simplify matters, we shall assume in this section that circuits do not 

contain voltage sources. Circuits that contain voltage sources will be analyzed in the next 

section.  

   

We shall now explain and apply these three steps. 

          The first step in nodal analysis is selecting a node as the reference or datum node. The 

reference node is commonly called the ground since it is assumed to have zero potential. A 

reference node is indicated by any of the three symbols in Fig. 3.1. We shall always use the 

symbol in Fig. 3.1(b). Once we have selected a reference node, we assign voltage 

designations to nonreference nodes. Consider, for example, the circuit in Fig. 3.2(a). Node 0 

is the reference node (v = 0), while nodes 1 and 2 are assigned voltages v1 and v2, 

Steps to Determine Node Voltages: 

1. Select a node as the reference node. Assign voltages v1, v2,. . vn−1 to the remaining n-1 

nodes. The voltages are referenced with respect to the reference node. 

2. Apply KCL to each of the n-1 nonreference nodes. Use Ohm’s law to express the branch 

currents in terms of node voltages. 

3. Solve the resulting simultaneous equations to obtain the unknown node voltages. 
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respectively. Keep in mind that the node voltages are defined with respect to the reference 

node. As illustrated in Fig. 3.2(a), each node voltage is the voltage with respect to the 

reference node. 

 

Figure 3.1 Common symbols for indicating a reference node. 

 

Figure 3.2 Typical circuits for nodal analysis.                                                                                                                                                          

          As the second step, we apply KCL to each nonreference node in the circuit. To avoid 

putting too much information on the same circuit, the circuit in Fig. 3.2(a) is redrawn in 

Fig. 3.2(b), where we now add i1, i2, and i3 as the currents through resistors R1, R2, and R3, 

respectively. At node 1, applying KCL gives 

               I1 = I2 + i1 + i2                                                                                                      (3.1) 

At node 2, 

               I2 + i2 = i3                                                                                                             (3.2) 

          We now apply Ohm’s law to express the unknown currents i1, i2, and i3 in terms of 

node voltages.                                                                                          

Current flows from a higher potential to a lower potential in a resistor. 

We can express this principle as 

                   
        –       

 
                                                                                                (3.3) 

Note that this principle is in agreement with the way we defined resistance in Chapter 2 (see 

Fig. 2.3). With this in mind, we obtain from Fig. 3.2(b), 
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   –  

  
  ,   

                    
   –   

  
 ,     

                    
   –  

  
  ,                                                                                                       (3.4) 

Substituting Eq. (3.4) in Eqs. (3.1) and (3.2) results, respectively, in 

                       
   

  
 
     

  
                                                                                          (3.5) 

                      
   

  
 

  

  
                                                                                               (3.6) 

In terms of the conductances, Eqs. (3.5) and (3.6) become 

               I1 = I2 + G1v1 + G2 (v1 − v2)                                                                                (3.7) 

               I2 + G2 (v1 − v2) = G3v2                                                                                       (3.8) 

          The third step in nodal analysis is to solve for the node voltages. If we apply KCL to 

n−1 nonreference nodes, we obtain n−1 simultaneous equations such as Eqs. (3.5) and (3.6) 

or (3.7) and (3.8). For the circuit of Fig. 3.2, we solve Eqs. (3.5) and (3.6) or (3.7) and (3.8) 

to obtain the node voltages v1 and v2 using any standard method, such as the substitution 

method, the elimination method, Cramer’s rule, or matrix inversion. To use either of the last 

two methods, one must cast the simultaneous equations in matrix form. For example, Eqs. 

(3.7) and (3.8) can be cast in matrix form as 

               [
        
        

] [
  
  
]  [

     
  

]                                                                (3.9) 

which can be solved to get v1 and v2.  

Example 3.1:  Calculate the node voltages in the circuit shown in Fig. 3.3(a). 

Solution: 

          Consider Fig. 3.3(b), where the circuit in Fig. 3.3(a) has been prepared for nodal 

analysis. Notice how the currents are selected for the application of KCL. Except for the 

branches with current sources, the labeling of the currents is arbitrary but consistent. (By 

consistent, we mean that if, for example, we assume that i2 enters the 4_resistor from the 

left-hand side, i2 must leave the resistor from the right-hand side.) The reference node is 

selected, and the node voltages v1 and v2 are now to be determined. 
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Figure 3.3 For Example 3.1: (a) original 

circuit, (b) circuit for analysis 

At node 1, applying KCL and Ohm’s law gives 

           i1 = i2 + i3 ⇒     
       

 
  

      

 
 

Multiplying each term in the last equation by 4, we obtain 

         20 = v1 − v2 + 2v1 

or 

         3v1 − v2 = 20                                                        (3.1.1) 

At node 2, we do the same thing and get 

          i2 + i4 = i1 + i5 ⇒ 
       

 
       

      

 
 

Multiplying each term by 12 results in 

         3v1 − 3v= + 120 = 60 + 2v2 

or 

        −3v1 + 5v2 = 60                                                     (3.1.2) 

 

          Now we have two simultaneous Eqs. (3.1.1) and (3.1.2). We can solve the equations 

using any method and obtain the values of v1 and v2. 

METHOD 1: Using the elimination technique, we add Eqs. (3.1.1) and (3.1.2). 

               4v2 = 80 ⇒ v2 = 20 V 

Substituting v2 = 20 in Eq. (3.1.1) gives 

               3v1 − 20 = 20 ⇒ v1 =40/3 = 13.33 V 

METHOD 2: To use Cramer’s rule, we need to put Eqs. (3.1.1) and (3.1.2) in matrix form 

as  

               [
      
     

] [
  
  
]  [

  
  
]                                                                                     (3.1.3) 

The determinant of the matrix is 

                   |
      
     

|          

We now obtain v1 and v2 as 

                  
  

 
 
|
    
    

|

 
 
      

  
         

                  
  

 
 
|
      
     

|
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If we need the currents, we can easily calculate them from the values of the nodal voltages.   

i1 = 5 A,     
       

 
            ,     

  

 
         , i4 = 10 A,     

  

 
          

The fact that i2 is negative shows that the current flows in the direction opposite to the one 

assumed. 

Practice problem 3.1: Find the voltages at the three nonreference nodes in the circuit of 

Figure below. 

Answer: v1 = 80 V, v2 = −64 V, v3 = 156 V. 

 

 

3.2.1 NODAL ANALYSIS WITH VOLTAGE SOURCES 

          We now consider how voltage sources affect nodal analysis. We use the circuit in Fig. 

3.4 for illustration. Consider the following two possibilities. 

CASE 1: If a voltage source is connected between the reference node and a nonreference 

node, we simply set the voltage at the nonreference node equal to the voltage of the voltage 

source. In Fig. 3.4, for example, 

          v1 = 10 V                                                                                                                 (3.10) 

Thus our analysis is somewhat simplified by this knowledge of the voltage at this node. 

 

Figure 3.4 A circuit with a supernode. 

CASE 2: If the voltage source (dependent or independent) is connected between two 

nonreference nodes, the two nonreference nodes form a generalized node or supernode; we 

apply both KCL and KVL to determine the node voltages. 

A supernode is formed by enclosing a (dependent or independent) voltage source connected 

between two nonreference nodes and any elements connected in parallel with it.  
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          In Fig. 3.4, nodes 2 and 3 form a supernode. (We could have more than two nodes 

forming a single supernode. For example, see the circuit in the Practice problem 3.4). We 

analyze a circuit with supernodes using the same three steps mentioned in the previous 

section except that the supernodes are treated differently. Why? Because an essential 

component of nodal analysis is applying KCL, which requires knowing the current through 

each element. There is no way of knowing the current through a voltage source in advance. 

However, KCL must be satisfied at a supernode like any other node. Hence, at the 

supernode in Fig. 3.5, 

               i1 + i4 = i2 + i3                                                                                                   (3.11a) 

or           
       

 
  

       

 
  

      

 
  

   –  

 
                                                                     (3.11b) 

        To apply Kirchhoff’s voltage law to the supernode in Fig. 3.4, we redraw the circuit as 

shown in Fig. 3.5. Going around the loop in the clockwise direction gives 

              −v2 + 5 + v3 = 0 ⇒ v2 − v3 = 5                                                                            (3.12) 

From Eqs. (3.10), (3.11b), and (3.12), we obtain the node voltages. 

 

Figure 3.5 Applying KVL to a supernode. 

Example 3.2: For the circuit shown in Fig. 3.6, find the node voltages. 

Solution: 

      The supernode contains the 2-V source, nodes 1 and 

2, and the 10-Ω resistor. Applying KCL to the 

supernode as shown in Fig. 3.7(a) gives 

         2 = i1 + i2 + 7 

   Expressing i1 and i2 in terms of the node voltages 

           
      

 
  

      

 
      

or 

         Figure 3.6 For Example 3.2.                     v2 = −20 − 2v1                                                  (3.2.1) 
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     To get the relationship between v1 and v2, we apply KVL to the circuit in Fig. 3.7(b). 

Going around the loop, we obtain 

               −v1 − 2 + v2 = 0  ⇒ v2 = v1 + 2                                                                         (3.3.2) 

From Eqs. (3.2.1) and (3.2.2), we write 

               v2 = v1 + 2 = −20 − 2v1 

or 

               3v1 = −22   ⇒ v1 = −7.333 V 

and v2 = v1 +2 = −5.333 V. Note that the 10-Ω resistor does not make any difference 

because it is connected across the supernode. 

 

(a)                                                    (b) 

Figure 3.7 Applying: (a) KCL to the supernode, (b) KVL to the loop. 

Practice problem 3.2: Find v and i in the circuit in Figure below. 

Answer: −0.2 V, 1.4 A. 

 

 

 

 

3.3 MESH ANALYSIS 

          Mesh analysis provides another general procedure for analyzing circuits, using mesh 

currents as the circuit variables. Using mesh currents instead of element currents as circuit 

variables is convenient and reduces the number of equations that must be solved 

simultaneously. Recall that a loop is a closed path with no node passed more than once. A 

mesh is a loop that does not contain any other loop within it. 

          Nodal analysis applies KCL to find unknown voltages in a given circuit, while mesh 

analysis applies KVL to find unknown currents. Mesh analysis is not quite as general as 

nodal analysis because it is only applicable to a circuit that is planar. A planar circuit is one 
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that can be drawn in a plane with no branches crossing one another; otherwise it is 

nonplanar. A circuit may have crossing branches and still be planar if it can be redrawn 

such that it has no crossing branches. For example, the circuit in Fig. 3.8 (a) has two 

crossing branches, but it can be redrawn as in Fig. 3.8 (b). Hence, the circuit in Fig. 3.8 (a) 

is planar. However, the circuit in Fig. 3.9 is nonplanar, because there is no way to redraw it 

and avoid the branches crossing. Nonplanar circuits can be handled using nodal analysis, 

but they will not be considered in this text. 

 

 

Figure 3.8 (a) A planar circuit with crossing branches, (b) the same circuit redrawn with no crossing branches. 

 

Figure 3.9 A nonplanar circuit. 

To understand mesh analysis, we should first explain more about what we mean by a mesh. 

A mesh is a loop which does not contain any other loops within it.  

          In Fig. 3.10, for example, paths abefa and bcdeb are meshes, but path abcdefa is not 

a mesh. The current through a mesh is known as mesh current. In mesh analysis, we are 

interested in applying KVL to find the mesh currents in a given circuit. 
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Figure 3.10 circuit with two meshes. 

          In this section, we will apply mesh analysis to planar circuits that do not contain 

current sources. In the next sections, we will consider circuits with current sources. In the 

mesh analysis of a circuit with n meshes, we take the following three steps. 

 

          To illustrate the steps, consider the circuit in Fig. 3.10. The first step requires that 

mesh currents i1 and i2 are assigned to meshes 1 and 2. Although a mesh current may be 

assigned to each mesh in an arbitrary direction, it is conventional to assume that each mesh 

current flows clockwise. 

As the second step, we apply KVL to each mesh. Applying KVL to mesh 1, we obtain 

               −V1 + R1i1 + R3 (i1 − i2) = 0 

or 

               (R1 + R3) i1 − R3i2 = V1                                                                                     (3.13) 

For mesh 2, applying KVL gives 

               R2i2 + V2 + R3 (i2 − i1) = 0 

or 

              −R3i1 + (R2 + R3) i2 = −V2                                                                                  (3.14) 

          Note in Eq. (3.13) that the coefficient of i1 is the sum of the resistances in the first 

mesh, while the coefficient of i2 is the negative of the resistance common to meshes 1 and 2. 

Now observe that the same is true in Eq. (3.14). This can serve as a shortcut way of writing 

the mesh equations. 

Steps to Determine mesh currents: 

1. Assign mesh currents i1, i2, . . . , in to the n meshes. 

2. Apply KVL to each of the n meshes. Use Ohm’s law to express the voltages in terms 

of the mesh currents. 

3. Solve the resulting n simultaneous equations to get the mesh currents. 
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The third step is to solve for the mesh currents. Putting Eqs. (3.13). and (3.14) in matrix 

form yields 

               [
        
        

] [
  
  
]  [

     
   

]                                                                 (3.15) 

which can be solved to obtain the mesh currents i1 and i2. We are at liberty to use any 

technique for solving the simultaneous equations. If a circuit has n nodes, b branches, and l 

independent loops or meshes, then l = b−n+1. Hence, l independent simultaneous equations 

are required to solve the circuit using mesh analysis. 

          Notice that the branch currents are different from the mesh currents unless the mesh is 

isolated. To distinguish between the two types of currents, we use i for a mesh current and I 

for a branch current. The current elements I1, I2, and I3 are algebraic sums of the mesh 

currents. It is evident from Fig. 3.13 that 

               I1 = i1,    I2 = i2,    I3 = i1 − i2                                                                              (3.16) 

Example 3.3: For the circuit in Fig. 3.11, find the branch currents I1, I2, and I3 using mesh 

analysis. 

 

 

Solution: 

We first obtain the mesh currents using KVL. For mesh 1, 

               −15 + 5i1 + 10(i1 − i2) + 10 = 0 

or                                                                                                           

                3i1 − 2i2 = 1                                                                                                      (3.5.1) 

For mesh 2, 

               6i2 + 4i2 + 10(i2 − i1) − 10 = 0 

or 

                i1 = 2i2 − 1                                                                                                        (3.5.2) 

Using the substitution method, we substitute Eq. (3.3.2) into Eq. (3.3.1), and write 

                6i2 − 3 − 2i2 = 1 ⇒   i2 = 1 A 

From Eq. (3.5.2), i1 = 2i2 − 1 = 2 − 1 = 1 A. Thus, 

               I1 = i1 = 1 A, I2 = i2 = 1 A, I3 = i1 − i2 = 0 

Figure 3.11 For Example 3.3. 
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Practice problem 3.3: Calculate the mesh currents i1 and i2 in the circuit of Figure below. 

Answer:  i1 = 2/3 A, i2 = 0 A. 

 

 

3.3.1 MESH ANALYSIS WITH CURRENT 

SOURCES 

          Applying mesh analysis to circuits containing current sources (dependent or 

independent) may appear complicated. But it is actually much easier than what we 

encountered in the previous section, because the presence of the current sources reduces the 

number of equations. Consider the following two possible cases. 

 

Figure 3.12 A circuit with a current source. 

CASE 1: When a current source exists only in one mesh: Consider the circuit in Fig. 3.12, 

for example. We set i2 = −5 A and write a mesh equation for the other mesh in the usual 

way, that is, 

               −10 + 4i1 + 6(i1 − i2) = 0 ⇒ i1 = −2 A                                                                (3.17) 

CASE 2: When a current source exists between two meshes: Consider the circuit in Fig. 

3.13(a), for example. We create a supermesh by excluding the current source and any 

elements connected in series with it, as shown in Fig. 3.13(b). Thus, 

A supermesh results when two meshes have a (dependent or independent) current 

source in common. 

 

Figure 3.13 (a) Two meshes having a current source in common, (b) a supermesh, created by excluding the current source. 
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          As shown in Fig. 3.13(b), we create a supermesh as the periphery of the two meshes 

and treat it differently. (If a circuit has two or more supermeshes that intersect, they should 

be combined to form a larger supermesh.) Why treat the supermesh differently? Because 

mesh analysis applies KVL—which requires that we know the voltage across each 

branch—and we do not know the voltage across a current source in advance. However, a 

supermesh must satisfy KVL like any other mesh. 

Therefore, applying KVL to the supermesh in Fig. 3.13(b) gives 

              −20 + 6i1 + 10i2 + 4i2 = 0 

or 

               6i1 + 14i2 = 20                                                                                                    (3.18) 

We apply KCL to a node in the branch where the two meshes intersect. 

Applying KCL to node 0 in Fig. 3.13(a) gives 

               i2 = i1 + 6                                                                                                            (3.19) 

Solving Eqs. (3.18) and (3.19), we get 

               i1 = −3.2 A, i2 = 2.8 A                                                                                        (3.20) 

Example 3.4:  For the circuit in Fig. 3.14, find i1 to i4 using mesh analysis. 

 

Figure 3.14 For Example 3.4. 

Solution: 

          Note that meshes 1 and 2 form a supermesh since they have an independent current 

source in common. Also, meshes 2 and 3 form another supermesh because they have a 

dependent current source in common. The two supermeshes intersect and form a larger 

supermesh as shown. Applying KVL to the larger supermesh, 

               2i1 + 4i3 + 8(i3 − i4) + 6i2 = 0 

or 
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               i1 + 3i2 + 6i3 − 4i4 = 0                                                                                        (3.4.1) 

For the independent current source, we apply KCL to node P: 

               i2 = i1 + 5                                                                                                           (3.4.2) 

For the dependent current source, we apply KCL to node Q: 

               i2 = i3 + 3io 

But io = −i4, hence, 

               i2 = i3 − 3i4                                                                                                         (3.4.3) 

Applying KVL in mesh 4, 

               2i4 + 8(i4 − i3) + 10 = 0 

or 

               5i4 − 4i3 = −5                                                                                                     (3.4.4) 

From Eqs. (3.4.1) to (3.4.4), 

               i1 = −7.5 A, i2 = −2.5 A, i3 = 3.93 A, i4 = 2.143 A 

Practice problem 3.4: Use mesh analysis to determine i1, i2, and i3 in Figure shown below. 

Answer: i1 = 3.474 A, i2 = 0.474 A, i3 = 1.105 A. 
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CHAPTER FOUR 

CIRCUIT THEOREMS 

4.1 INTRODUCTION 

          The growth in areas of application of electric circuits has led to an evolution from 

simple to complex circuits. To handle the complexity, engineers over the years have 

developed some theorems to simplify circuit analysis. Such theorems include Thevenin’s and 

Norton’s theorems. Since these theorems are applicable to linear circuits, we first discuss the 

concept of circuit linearity. In addition to circuit theorems, we discuss the concepts of 

superposition and maximum power transfer in this chapter.  

4.2 SUPERPOSITION           

The idea of superposition rests on the linearity property. 

The superposition principle states that the voltage across (or current through) an 

element in a linear circuit is the algebraic sum of the voltages across (or currents 

through) that element due to each independent source acting alone. 

However, to apply the superposition principle, we must keep two things in mind: 

1. We consider one independent source at a time while all other independent sources are 

turned off. This implies that we replace every voltage source by 0 V (or a short circuit), and 

every current source by 0 A (or an open circuit).  

2. Dependent sources are left intact because they are controlled by circuit variables. With 

these in mind, we apply the superposition principle in three steps: 

 

          Analyzing a circuit using superposition has one major disadvantage: it may very likely 

involve more work.  Keep in mind that superposition is based on linearity.  

 

 

 

Steps to Apply Super position Principle: 

1.  Turn off all independent sources except one source. Find the output (voltage or current) due 

to that active source using nodal or mesh analysis. 

2.   Repeat step 1 for each of the other independent sources. 

3. Find the total contribution by adding algebraically all the contributions due to the 

independent sources. 
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Example 4.2: Use the superposition theorem to find v in the circuit in Fig. 4.2. 

Solution: 

Since there are two sources, let 

               v = v1 + v2 

Where v1 and v2 are the contributions due to the 6-V voltage 

source and the 3-A current source, respectively. To obtain v1, 

we set the current source to zero, as shown in Fig. 4.3(a). 

Applying KVL to the loop in Fig. 4.3(a) gives 

               12i1 − 6 = 0 ⇒ i1 = 0.5 A 

Thus, 

               v1 = 4i1 = 2 V 

We may also use voltage division to get v1 by writing 

                   
 

     
          

To get v2, we set the voltage source to zero, as in Fig. 4.3(b). Using 

current division, 

                   
 

     
          

Hence,         v2 = 4i3 = 8 V 

And we find          v = v1 + v2 = 2 + 8 = 10 V 

 

Practice problems:  

1-Using the superposition theorem, find vo in the circuit in Figure below. 

Answer: 12 V. 

 

 

 

 

 

2- Use superposition to obtain vx in the circuit of Figure below. 

Answer: vx = -8.572V. 

 

 

 

 

 

Figure 4.2 for Example 4.2. 

Figure 4.3 for Example 4.2:  

(a) Calculating v1, (b) calculating v2. 
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4.3 THEVENIN’S THEOREM 

          It often occurs in practice that a particular element in a circuit is variable (usually called 

the load) while other elements are fixed. As a typical example, a household outlet terminal 

may be connected to different appliances constituting a variable load. Each time the variable 

element is changed, the entire circuit has to be analyzed all over again. To avoid this problem, 

Thevenin’s theorem provides a technique by which the fixed part of the circuit is replaced by 

an equivalent circuit. 

       According to Thevenin’s theorem, the linear 

circuit in Fig. 4.8(a) can be replaced by that in Fig. 

4.8(b) is known as the Thevenin equivalent circuit; it 

was developed in 1883 by M. Leon Thevenin (1857–

1926), a French telegraph engineer. 

Thevenin’s theorem states that a linear two-terminal 

circuit can be replaced by an equivalent circuit 

consisting of a voltage source VTh in series with a 

resistor RTh, where VTh is the open-circuit voltage at 

the terminals and RTh is the input or equivalent 

resistance at the terminals when the independent 

sources are turned off. 

         To find the Thevenin equivalent voltage VTh and resistance RTh, suppose the two circuits 

in Fig. 4.8 are equivalent. The open-circuit voltage across the terminals a-b in Fig. 4.8(a) must 

be equal to the voltage source VTh in Fig. 4.8(b), since the two circuits are equivalent. Thus 

VTh is the open-circuit voltage across the terminals as shown in Fig. 4.9(a); that is, 

               VTh = voc                                                                                                                (4.8) 

 

Figure 4.9 Finding VTh and RTh. 

          RTh is the input resistance at the terminals when the independent sources are turned off, 

as shown in Fig. 4.9(b); that is, 

               RTh = Rin                                                                                                                 (4.9) 

Figure 4.8 Replacing a linear two-terminal 

circuit by its Thevenin equivalent: (a) 

original circuit, (b) the Thevenin equivalent 

circuit. 
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        To apply this idea in finding the Thevenin resistance RTh, we need to consider two cases. 

CASE 1: If the network has no dependent sources, we turn off all independent sources. RTh is 

the input resistance of the network looking between terminals a and b, as shown in Fig. 

4.9(b). 

CASE 2: If the network has dependent sources, we turn 

off all independent sources. As with superposition, 

dependent sources are not to be turned off because they are 

controlled by circuit variables. We apply a voltage source 

vo at terminals a and b and determine the resulting current 

io. Then RTh = vo/io, as shown in Fig. 4.10(a). 

Alternatively, we may insert a current source io at 

terminals a-b as shown in Fig. 4.10(b) and find the 

terminal voltage vo. Again RTh = vo/io. Either of the two 

approaches will give the same result. In either approach we 

may assume any value of vo and io. For example, we may 

use vo = 1 V or io = 1 A, or even use unspecified values of 

vo or io. 

          It often occurs that RTh takes a negative value. In this case, the negative resistance (v = 

−iR) implies that the circuit is supplying power. This is possible in a circuit with dependent 

sources.  

          The current IL through the load and the voltage VL across the load are easily determined 

once the Thevenin equivalent of the circuit at the load’s terminals is obtained, as shown in 

Fig. 4.11(b). From Fig. 4.11(b), we obtain 

                   
   

        
                                                                                                    (4.10a) 

                          
  

        
                                                                                (4.10b) 

Note from Fig. 4.11(b) that the Thevenin equivalent is a simple voltage divider, yielding VL 

by mere inspection. 

Figure 4.11 A circuit with a load :(a) original  

circuit, (b) Thevenin equivalent. 

Figure 4.10 Finding RTh when circuit has  

dependent sources. 



Al-Safwah University College  

Dept. of Computer Tech. Eng 

_________________________________________________________________________________   
                                                      

5 CHAPTER ONE                                                                                                                                                                  CIRCUIT THEOREMS 

                                                   

 

Example 4.4: Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.12, to the left 

of the terminals a-b. Then find the current through RL = 6, 16, and 36 Ω. 

 

Figure 4.12 For Example 4.4. 

Solution: 

          We find RTh by turning off the 32-V voltage source (replacing it with a short circuit) and 

the 2-A current source (replacing it with an open circuit). The circuit becomes what is shown 

in Fig. 4.13(a). Thus, 

                                
      

  
           

 

Figure 4.13 For Example 4.4: (a) finding RTh, (b) finding VTh. 

        To find VTh, consider the circuit in Fig. 4.13(b). Applying mesh analysis to the two 

loops, we obtain 

               −32 + 4i1 + 12(i1 − i2) = 0,        i2 = −2 A 

Solving for i1, we get i1 = 0.5 A. Thus, 

               VTh = 12(i1 − i2) = 12(0.5 + 2.0) = 30 V       

     The Thevenin equivalent circuit is shown in Fig. 4.14. The current through RL is 

                   
   

        
  

  

      
 

When RL = 6,            
  

  
     

When RL = 16,          
  

  
       

When RL = 36,          
  

  
        

 

 

Figure 4.14 The Thevenin equivalent circuit 
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Practice problem: Using Thevenin’s theorem, find the equivalent circuit to the left of the 

terminals in the circuit in Figure below. Then find i. 

Answer: VTh = 6 V, RTh = 3 Ω, i = 1.5 A. 

 

 

    

4.4 NORTON’S THEOREM 

          In 1926, about 43 years after Thevenin published his theorem, E. L. Norton, an 

American engineer at Bell Telephone Laboratories, proposed a similar theorem. 

Norton’s theorem states that a linear two-terminal circuit can be replaced by an equivalent 

circuit consisting of a current source IN in parallel with a resistor RN, where IN is the short-

circuit current through the terminals and RN is the input or equivalent resistance at the 

terminals when the independent sources are turned off. 

          Thus, the circuit in Fig. 4.15(a) can be replaced by the one in Fig. 4.15(b).  

 

Figure 4.15 (a) Original circuit, (b) Norton equivalent circuit. 

We are mainly concerned with how to get RN and IN. We find RN in the same way we find 

RTh. In fact, the Thevenin and Norton resistances are equal; that is, 

               RN = RTh                                                                                                               (4.11) 

          To find the Norton current IN, we determine the short-circuit current flowing from 

terminal a to b in both circuits in Fig. 4.15. It is evident that the short-circuit current in Fig. 

4.15(b) is IN. This must be the same short-circuit current from terminal a to b in Fig. 4.15(a), 

since the two circuits are equivalent. Thus, 

               IN = isc                                                                                                                    (4.12) 

Dependent and independent sources are treated the same way as in Thevenin’s theorem. 

Observe the close relationship between Norton’s and Thevenin’s theorems: RN = RTh as in 

Eq. (4.11), and 

                   
   

   
                                                                                                                (4.13) 
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This is essentially source transformation. For this reason, source transformation is often called 

Thevenin-Norton transformation. 

      We can calculate any two of the three using the method that takes the least effort and use 

them to get the third using Ohm’s law. Example 4.10 will illustrate this. Also, since 

               VTh = voc                                                                                                              (4.14a) 

               IN = isc                                                                                                                  (4.14b) 

                    
   

   
                                                                                                     (4.14c) 

the open-circuit and short-circuit tests are sufficient to find any Thevenin or Norton 

equivalent. 

Example 4.5 Find the Norton equivalent circuit of the circuit in Fig. 4.16. 

Solution: 

          We find RN in the same way we find RTh in 

the Thevenin equivalent circuit. Set the 

independent sources equal to zero. This leads to 

the circuit in Fig. 4.17(a), from which we find RN. 

Thus, 

                             
      

  
       

To find IN, we short-circuit terminals a and b, as shown in Fig. 4.17(b). We ignore the 5-Ω 

resistor because it has been short-circuited. Applying mesh analysis, we obtain 

               i1 = 2 A,             20i2 − 4i1 − 12 = 0 

From these equations, we obtain 

               i2 = 1 A = isc = IN 

Alternatively, we may determine IN from VTh/RTh. We obtain VTh as the open-circuit voltage 

across terminals a and b in Fig. 4.17(c). Using mesh analysis, we obtain 

               i3 = 2 A 

              25i4 − 4i3 − 12 = 0   ⇒ i4 = 0.8 A 

and 

              voc = VTh = 5i4 = 4 V 

Figure 4.16 For Example 4.5. 
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Figure 4.17 For Example 4.5; finding: (a) RN, (b) IN = isc, (c) VTh = voc. 

Hence, 

                 
   

   
  

 

  
      

as obtained previously. This also serves to confirm Eq. that 

RTh = voc/isc = 4/1 = 4 Ω. Thus, the Norton equivalent circuit 

is as shown in Fig. 4.18. 

Figure 4.18 Norton equivalent of the circuit in Fig. 4.16. 

Practice problem: Find the Norton equivalent circuit for the circuit in Figure below. 

Answer: RN = 3 Ω, IN = 4.5 A. 

 

 

 

4.5 MAXIMUM POWER TRANSFER 

          In many practical situations, a circuit is designed to provide power to a load. While for 

electric utilities, minimizing power losses in the process of 

transmission and distribution is critical for efficiency and 

economic reasons, there are other applications in areas such as 

communications where it is desirable to maximize the power 

delivered to a load. We now address the problem of delivering 

the maximum power to a load when given a system with 

known internal losses.  

Figure 4.19 The circuit used for 

maximum power transfer. 
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The Thevenin equivalent is useful in finding the maximum power a linear circuit can deliver 

to a load. We assume that we can adjust the load resistance RL. If the entire circuit is replaced 

by its Thevenin equivalent except for the load, as shown in Fig. 4.19, the power delivered to 

the load is 

                     ( 
   

        
)
 

                                                                                  (4.15) 

For a given circuit, VTh and RTh are fixed. By varying the load resistance RL, the power 

delivered to the load varies as sketched in Fig. 4.20. We notice from 

Fig. 4.20 that the power is small for small or large values of RL but 

maximum for some value of RL between 0 and ∞. We now want to 

show that this maximum power occurs when RL is equal to RTh. This 

is known as the maximum power theorem. 

 

Maximum power is transferred to the load when the load resistance 

equals the Thevenin resistance as seen from the load (RL = RTh). 

     To prove the maximum power transfer theorem, we differentiate p in Eq. (4.15) with 

respect to RL and set the result equal to zero. We obtain 

               
  

   
      

   *
                           

          
 

+       
   *

                

          
 

 +       

This implies that 

               0 = (RTh + RL − 2RL) = (RTh − RL)                                                                      (4.16) 

which yields 

               RL = RTh                                                                                                                (4.17) 

showing that the maximum power transfer takes place when the load resistance RL equals the 

Thevenin resistance RTh. We can readily confirm that Eq. (4.17) gives the maximum power 

by showing that d
2
p/dR

2
L < 0. 

   The maximum power transferred is obtained by substituting Eq. (4.17) into Eq. (4.15), for 

                     
   
  

    
                                                                                                         (4.18) 

Equation (4.18) applies only when RL = RTh. When RL ≠ RTh, we compute the power 

delivered to the load using Eq. (4.15). 

Example 4.6: Find the value of RL for maximum power transfer in the circuit of Fig. 4.21. 

Find the maximum power. 

Figure 4.20 Power delivered to the 

load as a function of RL 
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Solution: 

          We need to find the Thevenin resistance RTh and the Thevenin voltage VTh across the 

terminals a-b. To get RTh, we use the circuit in Fig. 4.22(a) and obtain 

                                   
      

  
       

 

Figure 4.22 For Example 4.6: (a) finding RTh, (b) finding VTh. 

To get VTh, we consider the circuit in Fig. 4.22(b). Applying mesh analysis, 

               −12 + 18i1 − 12i2 = 0,           i2 = −2 A 

Solving for i1, we get i1 = −2/3. Applying KVL around the outer loop to get VTh across 

terminals a-b, we obtain 

               −12 + 6i1 + 3i2 + 2(0) + VTh = 0 ⇒ VTh = 22 V 

For maximum power transfer, 

               RL = RTh = 9 Ω 

and the maximum power is 

                     
   
  

   
  

   

     
           

Practice problem: Determine the value of RL that will draw the maximum power from the 

rest of the circuit in Figure below. Calculate the 

maximum power. 

Answer: 4.22 Ω, 2.901 W. 

 

 

Figure 4.21 For Example 4.6. 
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