Computer Networks Protocols ## Lecture No.1: Introduction #### **Network Architecture** A set of layers and protocols is called the network architecture. #### **Protocol Hierarchies** - Networks are organized as layers to reduce design complexity. - Each layer offers services to the higher layers. Between adjacent layers is an interface. | Services | Interface | Primitives | |-------------------------|---|------------------------------| | connection oriented and | defines which primitives and | operations such as request, | | connectionless. | services the lower layer will offer to the upper layer. | indicate, response, confirm. | #### **Design Issues for the Layers(functions)** - 1. Mechanism for connection establishment - 2. Rules for data transfer - 3. Error control - 4. Fast sender swamping a slow receiver - 5. Routing in the case of multiple paths ### **Network Protocols** • <u>Protocol</u>: is a format order of messages sent and received among the net entities and action taken on msgs transmission receipt. #### • Protocol process : - 1. The format or structure of the message - 2. The process by which networking devices share information about pathways with other networks - 3. How and when error and system messages are passed between devices - 4. The setup and termination of data transfer sessions ### **Layering In Networked Computing** - OSI Model (open system interconnection) - TCP/IP Model #### Why a layered model? - 1. Breaks down communication into smaller, simpler parts. - 2. Easier to teach communication process. - **3. Allows** different hardware and software to work together. - 4. Reduces complexity #### The OSI model The Open Systems Interconnection is the model developed by the International Standards Organization. - helps us understand *how data gets from one user's* computer to another. - -It aids to provide an organized structure for hardware and software developers to follow. ### Why use a reference model? - Serves as an outline of rules for how protocols can be used to allow communication between computers. - Each layer has its **own function and provides support to other layers.** #### OSI model | Layer | Name | Example protocols | |-------|--------------------|--------------------------------------| | 7 | Application Layer | HTTP, FTP, DNS, SNMP, Telnet | | 6 | Presentation Layer | SSL, TLS | | 5 | Session Layer | NetBIOS, PPTP | | 4 | Transport Layer | TCP, UDP | | 3 | Network Layer | IP, ARP, ICMP, IPSec | | 2 | Data Link Layer | PPP, ATM, Ethernet | | 1 | Physical Layer | Ethernet, USB, Bluetooth, IEEE802.11 | | Benefits(Advantage) | Negative Aspect (disadvantage) | |---|---| | Interconnection of different systems (open)Not limited to a single vendor solution | Systems might be less secure Systems might be less stable | | Layer | Main Topics | |-------|-------------| |-------|-------------| | Physical Layer | Transmission mediums (transmit bits over medium) Encoding Modulation Repeaters Hubs (multi-port repeater) To provide mechanical and electrical specification | |--------------------|--| | Data Link Layer | Error detection and correction methods Hop to hop delivery Flow control Frame format IEEE LAN standards Bridges & Switches (multi-port bridges) physical addressing(MAC Address) | | Network Layer | Internetworking Controls the operation of the subnet. Routing algorithms(Routing packets from source to destination) Internet Protocol (IP) addressing (Logical addressing) Routers | | Transport Layer | Connection-oriented and connectionless services Provide reliable process to process message delivery & error recovery Transmission Control Protocol (TCP) User Datagram Protocol (UDP) Provides additional Quality of Service. Port address End-to-end flow control. | | Session Layer | Allows users on different machines to establish sessions (dialogue) between them. managing dialogue control. Token management. Synchronization. | | Presentation Layer | Concerned with the syntax and semantics of the information. Preserves the meaning of the information. Data compression. Data encryption. | | Application Layer | Provides protocols that are commonly needed. To allow access to network resource (FTP), (HTTP), (SMTP), (SNMP), (NFS), (Telnet) | ### **SERVICES** | Connection-Oriented | Connectionless | |--|--| | before data is sent, the service from the sending computer must establish a connection with the receiving computer. | data can be sent at any time by the service from the sending computer. | | OSI(Open System Interconnection) | TCP/IP(Transmission Control Protocol / Internet Protocol) | |--|---| | 1. OSI provides layer functioning and also defines functions of all the layers. | TCP/IP model is more based on protocols and protocols are not flexible with other layers. | | 2. OSI model has a separate presentation layer | 2. TCP/IP does not have a separate presentation layer | | 3. OSI is a general model. | 3. TCP/IP model cannot be used in any other application. | | 4. Network layer of OSI model provide both connection oriented and connectionless service. | 4. The Network layer in TCP/IP model provides connectionless service. | | 5. OSI model has a problem of fitting the protocols in the model | 5. TCP/IP model does not fit any protocol | | 6. Protocols are hidden in OSI model and are easily replaced as the technology changes. | 6. In TCP/IP replacing protocol is not easy. | | 7. OSI model defines services, interfaces and protocols very clearly and makes clear distinction between them. | 7. In TCP/IP it is not clearly separated its services, interfaces and protocols. | | 8. It has 7 layers | 8. It has 4 layers | #### R **OSI Model** TCP/IP Model 7. Domain Name System **Application Application** 6. **Application Presentation** Layers Hypertext Transfer Protocol 5. Session Simple Mail Transfer Protocol 4. **Transport Transport** 3. Network Post Office Protocol Internet **Data Flow** Layers 2. Data Link Network Dynamic Host Configuration Protocol Access 1. Physical ### **Data Encapsulation** - Each layer contains a Protocol Data Unit (PDU) - PDU's are used for **peer-to-peer contact** between corresponding layers. | The Layer | Shape of data (PDU) | |------------------|---------------------| | top three layers | Data | | Transport layer | Segment | | Network layer | packets | | Data Link layer | frames | | Physical layer | bits | ### 4 layers of the TCP/IP model - •Layer 4: Application - •Layer 3: Transport - •Layer 2: Internet - •Layer 1: Network access It is important to note that some of the layers in the TCP/IP model have the same name as layers in the OSI model. Do not confuse the layers of the two models. #### **Data Encapsulation In TCP/IP** - Outgoing data is packaged and identified for **delivery** to the layer underneath - PDU Packet Data Unit the "envelop" information attached to a packet at a particular TCP/IP protocol e.g. header and trailer - Header (Identifies the protocol in use, the sender and intended recipient) - Trailer (or packet trailer) (Provides data integrity checks for the payload) ### **Data Formats** ### **Encapsulation (TCP/IP)** ### **Encapsulation example: E-mail** ### **TCP/IP** protocol stack #### **TCP/IP Reference Model** ### Layer ### **Protocols** #### What is a socket? - An interface between application and network(each application create socket) - Socket(Protocol family, type-of-communication, specific- protocol); - The socket *type* dictates the style of communication reliable vs. best effort connection-oriented vs. connectionless ### Q/Explain the delivery of data in Layered model? | Type of delivery | Layer | Shape of data | Type of addressing | |-----------------------|-----------|---------------|--------------------| | End to End | Transport | Segment | Port (socket) | | Source To Destination | Network | Packet | Logical (IP) | | Node to Node | Data Link | Frame | Physical(MAC) |