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Information Theory & Coding  
Information theory provides a quantitative measure of the information 

contained in message signals and allows us to determine the capacity of a 

communication system to transfer this information from source to 

destination. Through the use of coding, a major topic of information theory, 

redundancy can be reduced from message signals so that channels can be 

used with improved efficiency. In addition, systematic redundancy can be 

introduced to the transmitted signal so that channels can be used with 

improved reliability. 

Information theory attempts to analyses communication between a 

transmitter and a receiver through an unreliable channel, and in this approach 

performs, on the one hand, an analysis of information sources, especially the 

amount of information produced by a given source, and, on the other hand, 

states the conditions for performing reliable transmission through an 

unreliable channel. There are three main concepts in this theory: 

1. The first one is the definition of a quantity that can be a valid 

measurement of information, which should be consistent with a 

physical understanding of its properties. 

2. The second concept deals with the relationship between the 

information and the source that generates it. This concept will be 

referred to as source information. Well-known information theory 

techniques like compression and encryption are related to this 

concept. 

3. The third concept deals with the relationship between the information 

and the unreliable channel through which it is going to be transmitted. 

This concept leads to the definition of a very important parameter 

called the channel capacity. A well-known information theory 

technique called error-correction coding is closely related to this 

concept. 
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Figure 1.1 illustrates the relationship of information theory to other fields. 

As the figure suggests, information theory intersects physics (statistical 

mechanics), mathematics (probability theory), electrical engineering 

(communication theory) and computer science (algorithmic complexity). 

         

Figure 1.1. The relationship of information theory with other fields. 

Digital Communications Model  

In the transfer of digital information, the following framework is often used: 

 

 The source is an object that produces an event, the outcome of which 

is selected at random according to a probability distribution. A 
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practical source in a communication system is a device that produces 

messages, and it can be either analog or discrete. A discrete 

information source is a source that has only a finite set of symbols as 

possible outputs. The set of source symbols is called the source 

alphabet, and the elements of the set are called symbols or letters. 

Information sources can be classified as having memory or being 

memoryless. A source with memory is one for which a current symbol 

depends on the previous symbols. A memoryless source is one for 

which each symbol produces is independent of the previous symbols. 

A discrete memoryless source (DMS) can be characterized by the list 

of the symbols, the probability assignment to these symbols, and the 

specification of the rate of generating these symbols by the source. 

 The source encoder serves the purpose of removing as much 

redundancy as possible from the data. This is the data compression 

portion.  

 The channel coder puts a modest amount of redundancy back in order 

to do error detection or correction.  

 The channel is what the data passes through, possibly becoming 

corrupted along the way. There are a variety of channels of interest, 

including: 

o The magnetic recording channel 

o The telephone channel 

o Other band limited channels 

o The multi-user channel 

o Deep-space channels  

o Fading and/or jamming and/or interference channels  

 The channel decoder performs error correction or detection  

 The source decoder undoes what is necessary to get the data back. 

There are also other possible blocks that could be inserted into this 
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model like encryption/decryption and modulation/demodulation 

block. 

 

 

 

 

Character 
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Probability 

Probability: How likely something is to happen. 

Many events can't be predicted with total certainty. The best we can say is 

how likely they are to happen, using the idea of probability. 

Tossing a Coin  

When a coin is tossed, there are two possible outcomes: 

 heads (H) or  

 tails (T) 

 

 

Throwing Dice  

When a single die is thrown, there are six possible outcomes: 1, 2, 3, 4, 5, 6. 

                                              

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

Probability  

In general: 

Probability of an event happening =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑦𝑠 𝑖𝑡 𝑐𝑎𝑛 ℎ𝑎𝑝𝑝𝑒𝑛

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒐𝒖𝒕𝒄𝒐𝒎𝒆𝒔
 

 

 

We say that the probability of the coin 

landing H is ½. 

And the probability of the coin 

landing T is ½ 

The probability of any one of them is 1/6 

http://www.mathsisfun.com/geometry/fair-dice.html
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Probability Line 

Probability is the chance that something will happen. It can be shown on a 

line. 

                  

The probability of an event occurring is somewhere between impossible and 

certain. 

http://www.mathsisfun.com/data/probability.html
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As well as words we can use numbers (such as fractions or decimals) to 

show the probability of something happening: 

 Impossible is zero 

 Certain is one. 

Here are some fractions on the probability line: 

                        

We can also show the chance that something will happen: 

a) The sun will rise tomorrow.  

b) I will not have to learn mathematics at school.  

c) If I flip a coin it will land heads up.  

d) Choosing a red ball from a sack with 1 red ball and 3 green balls 

                       

Between 0 and 1 

 The probability of an event will not be less than 0.  

This is because 0 is impossible (sure that something will not 

happen). 

 The probability of an event will not be more than 1.  

This is because 1 is certain that something will happen. 
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Questions???????  

 

                                    

Which of the arrows A, B, C or D shows the best position on the probability line for the event 

'Tomorrow it will snow in Karbala'? 

 

                           

   A name is chosen at random from the telephone book. Which of the arrows A, B, C or D 

shows the best position on the probability line for the event 'The name begins with Z'?  
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Complement of an Event: All outcomes that are NOT the event. 

 

When the event is Heads, the complement is Tails 

 

When the event is {Monday, Wednesday} the 

complement is {Tuesday, Thursday, Friday, Saturday, 

Sunday} 

 

When the event is {Hearts} the complement is {Spades, 

Clubs, Diamonds, Jokers} 

 

So the Complement of an event is all the other outcomes (not the ones we 

want).And together the Event and its Complement make all possible 

outcomes. 

The probability of an event is shown using "P": 

P(A) means "Probability of Event A" 

The complement is shown by a little mark after the letter such as A' (or 

sometimes Ac or A): 

P(A') means "Probability of the complement of Event A" 

The two probabilities always add to 1 

P(A) + P(A') = 1 
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Why is the Complement Useful? 

It is sometimes easier to work out the complement first. 
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>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

Probability: Types of Events 

Life is full of random events! 

You need to get a "feel" for them to be a smart and successful person. 

The toss of a coin, throw of a dice and lottery draws are all examples of 

random events 

Events : When we say "Event" we mean one (or more) outcomes. 
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Events can be: 

 Independent (each event is not affected by other events), 

 Dependent (also called "Conditional", where an event is affected by other 

events) 

 Mutually Exclusive (events can't happen at the same time) 

Let's look at each of those types. 

Probability: Independent Events 

Life is full of random events! 

You need to get a "feel" for them to be a smart and successful person. 

The toss of a coin, throwing dice and lottery draws are all examples of random 

events. Sometimes an event can affect the next event. 

 

 

Independent Events are not affected by previous events. 

This is an important idea! 

A coin does not "know" it came up heads before. 

And each toss of a coin is a perfect isolated thing. 
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Some people think "it is overdue for a Tail", but really truly the next toss 

of the coin is totally independent of any previous tosses. 

Saying "a Tail is due", or "just one more go, my luck is due" is 

called The Gambler's Fallacy 

Of course your luck may change, because each toss of the coin has an 

equal chance. 

Probability of Independent Events 

"Probability" (or "Chance") is how likely something is to 

happen. So how do we calculate probability? 
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Ways of Showing Probability 

Probability  goes from 0 (impossible) to 1 (certain): 

                        

 

It is often shown as a decimal or fraction. 

 

 

http://www.mathsisfun.com/probability_line.html
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Two or More Events 

We can calculate the chances of two or more independent events 

by multiplying the chances 

 

So each toss of a coin has a ½ chance of being Heads, but lots of Heads in a 

row is unlikely. 
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Notation 

We use "P" to mean "Probability Of", 

So, for Independent Events: 

P(A and B) = P(A) × P(B) 

Probability of A and B equals the probability of A times the probability of B 
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Another Example 

Imagine there are two groups: 

 A member of each group gets randomly chosen for the winners circle, 

 then one of those gets randomly chosen to get the big money prize: 

 

What is your chance of winning the big prize? 

 there is a 1/5 chance of going to the winners circle 

 and a 1/2 chance of winning the big prize 

So you have a 1/5 chance followed by a 1/2 chance ... which makes a 

1/10 chance overall: 

1/5 × 1/2 = 1/10 

Or we can calculate using decimals (1/5 is 0.2, and 1/2 is 0.5): 

0.2 x 0.5 = 0.1 

So your chance of winning the big money is 0.1 (which is the same as 

1/10). 
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                                             Chapter One 

1. Introduction: 

Most scientists agree that information theory began in 1948 with Shannon’s 

famous article. In that paper, he provided answers to the following questions: 

 What is “information” and how to measure it? 

 What are the fundamental limits on the storage and the transmission of 

information? 

Shannon Paradigm: 

Transmitting a message from a transmitter to a receiver can be sketched as 

follows: 

 

The components of information system as described by Shannon are: 

1. An information source is a device which randomly delivers symbols 

from an alphabet. As an example, a PC (Personal Computer) connected 

to internet is an information source which produces binary digits from 

the binary alphabet {0, 1}. 

2. A channel is a system which links a transmitter to a receiver. It includes 

signaling equipment and pair of copper wires or coaxial cable or optical 

fiber, among other possibilities.  

3. A source encoder allows one to represent the data source more 

compactly by eliminating redundancy: it aims to reduce the data rate. 

A channel encoder adds redundancy to protect the transmitted signal against 

transmission errors 
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2-  Self- information: 

In information theory, self-information is a measure of the information 

content associated with the outcome of a random variable. It is expressed in 

a unit of information, for example bits, nats, or hartleys, depending on the 

base of the logarithm used in its calculation. 

A bit is the  basic unit  of  information  in computing and 

digital communications. A bit can have only one of two values, and may 

therefore be physically implemented with a two-state device. These values are 

most commonly represented as 0 and 1. 

A nat is the natural unit of information, sometimes also nit or nepit, is a 

unit of information or entropy, based on natural logarithms and powers of e, 

rather than the powers of 2 and base 2 logarithms which define the bit. This 

unit is also known by its unit symbol, the nat.  

The hartley (symbol Hart) is a unit of information defined by International 

Standard IEC 80000-13 of the International Electrotechnical Commission. 

One hartley is the information content of an event if the probability of that 

event occurring is 1/10. It is therefore equal to the information contained in 

one decimal digit (or dit). 

1 Hart ≈ 3.322 Sh ≈ 2.303 nat. 

The amount of self-information contained in a probabilistic event depends 

only on the probability of that event: the smaller its probability, the larger the 

self-information associated with receiving the information that the event 

indeed occurred. 

Suppose that the source of information produces finite set of message 

𝑥1, 𝑥2, … … . 𝑥𝑛with prob. 𝑝(𝑥1), 𝑝(𝑥2), … … … . 𝑃(𝑥𝑛)  and such that 

http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Units_of_measurement
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Nat_(unit)
http://en.wikipedia.org/wiki/Hartley_(unit)
http://en.wikipedia.org/wiki/Units_of_information
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Communication
http://en.wikipedia.org/wiki/Value_(computer_science)
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Information_entropy
http://en.wikipedia.org/wiki/Natural_logarithms
http://en.wikipedia.org/wiki/E_(mathematical_constant)
http://en.wikipedia.org/wiki/Binary_logarithm
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/IEC_80000-13
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Decimal_digit
http://en.wikipedia.org/wiki/Ban_(unit)
http://en.wikipedia.org/wiki/Shannon_(unit)
http://en.wikipedia.org/wiki/Nat_(unit)
http://en.wikipedia.org/wiki/Event_(probability_theory)
http://en.wikipedia.org/wiki/Probability
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∑ 𝑃(𝑥𝑖) = 1

𝑛

𝑖=1

 

1- Information is zero if 𝑃(𝑥𝑖) = 1 (certain event) 

2- Information increase as 𝑃(𝑥𝑖) decrease to zero 

3- Information is a +ve quantity 

 

The log function satisfies all previous three points hence: 

𝐼(𝑥𝑖) = − log𝑎 𝑃(𝑥𝑖) 

Where 𝐼(𝑥𝑖) is self information of (𝑥𝑖) and if: 

i- If “a” =2 , then 𝐼(𝑥𝑖) has the unit of bits 

ii- If “a”= e = 2.71828, then 𝐼(𝑥𝑖) has the unit of nats 

iii- If “a”= 10, then 𝐼(𝑥𝑖) has the unit of hartly 

Recall that log𝑎𝑥 =
𝑙𝑛𝑥

𝑙𝑛𝑎
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Example 1:  

A fair die is thrown, find the amount of information gained if you are told that 

4 will appear. 

Solution: 

𝑃(1) = 𝑃(2) = ⋯ … … . = 𝑃(6) =
1

6
 

𝐼(4) = −log2 (
1

6
) =

ln (
1
6

)

𝑙𝑛2
= 2.5849  𝑏𝑖𝑡𝑠 

Example 2: 

A biased coin has P(Head)=0.3. Find the amount of information gained if you 

are told that a tail will appear. 

Solution: 

𝑃(𝑡𝑎𝑖𝑙) = 1 − 𝑃(𝐻𝑒𝑎𝑑) = 1 − 0.3 = 0.7 

𝐼(𝑡𝑎𝑖𝑙) = −log2(0.7) = −
𝑙𝑛0.7

𝑙𝑛2
= 0.5145   𝑏𝑖𝑡𝑠 

3.Probability: A probabilistic model is a mathematical description of an 

uncertain situation. A probability of an event A: If an experiment has 𝐴1, 

𝐴2,……. 𝐴𝑛, outcomes, then: 

𝑃𝑟𝑜𝑏(𝐴𝑖) = 𝑃(𝐴𝑖) = lim
𝑁→∞

𝑛(𝐴𝑖)

𝑁
 

Where 𝑛(𝐴𝑖)= no. of times event (outcomes) (𝐴𝑖) occurs 

N= total number of trails. 

Not that  
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1 ≥ 𝑃(𝐴𝑖) ≥ 0,       and 

∑ 𝑃(𝐴𝑖)

𝑛

𝑖=1

= 1 

If 𝑃(𝐴𝑖) = 1     then  𝐴𝑖 is certain event 

When the sample space Ω has a finite number of equally likely outcomes, so 

that the discrete uniform probability law applies. Then, the probability of any 

event A is given by 

𝑃(𝐴) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐴

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 Ω 
 

 

4- Independent and dependent Events 

Events can be " Independent ", meaning each event is not affected by any 

other events. For example tossing a coin each toss of a coin is a perfect 

isolated. But events can also be "dependent" ... which means they can be 

affected by previous events. For example: Marbles in a Bag 2 blue and 3 red 

marbles are in a bag. What are the chances of getting a blue marble? The 

chance is 2 in 5. But after taking one out the chances change. So the next 

time, if we got a red marble before, then the chance of a blue marble next is 2 

in 4, if we got a blue marble before, then the chance of a blue marble next is 1 

in 4. 

Example: What are the chances of drawing 2 blue marbles from a group of 

2 blue and 3 red marbles? 

Solution:  

It is a 2/5 chance followed by a 1/4 chance: 

2

5
×

1

4
=

2

20
=

1

10
 

 

 

http://www.mathsisfun.com/data/probability-events-independent.html
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5- Conditional Probability 

It is happened when there are dependent events. We have to use the symbol 

"|" to mean "given": 

- P(B|A) means "Event B given Event A has occurred". 

- P(B|A) is also called the "Conditional Probability" of B given A has 

occurred . 

- And we write it as 

 

𝑃(𝐴 | 𝐵) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐴 𝑎𝑛𝑑 𝐵

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐵
 

Or 

𝑃(𝐴 | 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

Where 𝑃(𝐵) > 0 
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Example: A box contains 5 green pencils and 7 yellow pencils. Two pencils 

are chosen at random from the box without replacement. What is the 

probability they are different colors? 

Solution:  Using a tree diagram: 

 

Example: We toss a fair coin three successive times. We wish to find the 

conditional probability P(A | B) when A and B are the events 

A = {more heads than tails come up}, B = {1st toss is a head}. 

The sample space consists of eight sequences, 

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}, 

𝑃(𝐵) =
4

8
 

𝑃(𝐴 ∩ 𝐵) =
3

8
 

𝑃(𝐴 | 𝐵) =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
=

3

8
4

8

= 3/4  
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Bayes’ Rule: Let A1, A2,...,An be disjoint events that form a partition of 

the sample space, and assume that P(Ai) > 0, for all i. Then, for any event 

B such that P(B) > 0, we have 

𝑃(𝐴𝑖  | 𝐵) =
𝑃(𝐴𝑖  )𝑃(𝐵|𝐴𝑖)

𝑃(𝐵)
 

=
𝑃(𝐴𝑖  )𝑃(𝐵|𝐴𝑖)

𝑃(𝐴1 )𝑃(𝐵|𝐴1)+. . +𝑃(𝐴𝑛 )𝑃(𝐵|𝑛)
 

 

Entropy 

In information theory, entropy is the average amount of information 

contained in each message received. Here, message stands for an event, 

sample or character drawn from a distribution or data stream. Entropy thus 

characterizes our uncertainty about our source of information. 

Source Entropy: 

If the source produces not equiprobable messages then 𝐼(𝑥𝑖), 𝑖 =

1, 2, … … . . , 𝑛 are different. Then the statistical average of 𝐼(𝑥𝑖) over i will 

give the average amount of uncertainty associated with source X. This average 

is called source entropy and denoted by 𝐻(𝑋), given by: 

𝐻(𝑋) = ∑ 𝑃(𝑥𝑖)

𝑛

𝑖=1

𝐼(𝑥𝑖) 

∴    𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)

𝑛

𝑖=1

log𝑎 𝑃(𝑥𝑖) 

 

 

http://en.wikipedia.org/wiki/Information_theory
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Example: 

Find the entropy of the source producing the following messages: 

𝑃𝑥1 = 0.25, 𝑃𝑥2 = 0.1,   𝑃𝑥3 = 0.15,   𝑎𝑛𝑑 𝑃𝑥4 = 0.5 

 

Solution: 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)

𝑛

𝑖=1

log𝑎 𝑃(𝑥𝑖)

= −
[0.25𝑙𝑛0.25 + 0.1𝑙𝑛0.1 + 0.15𝑙𝑛0.15 + 0.5𝑙𝑛0.5]

𝑙𝑛2
 

𝐻(𝑋) = 1.7427 
𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙
 

Example: 

Find and plot the entropy of binary source. 

𝑃(0𝑇) + 𝑃(1𝑇) = 1 

𝐻(𝑋) = −[𝑃(0𝑇) log2 𝑃(0𝑇) + (1

− 𝑃(0𝑇)) log2(1 − 𝑃(0𝑇))] 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

If 𝑃(0𝑇) = 0.2, 𝑡ℎ𝑒𝑛 𝑃(1𝑇) = 1 − 0.2 = 0.8, 𝑎𝑛𝑑 𝑝𝑢𝑡 𝑖𝑛 𝑎𝑏𝑜𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛,  

𝐻(𝑋) = −[0.2 log2(0.2) + 0.8 log2(0.8)] = 0.7 

 

Not that H(X) is maximum equal to 1(bit) if:  𝑃(0𝑇) = 𝑃(1𝑇) = 0.5 as shown 

in figure. 
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If all messages are equiprobable, then 𝑃(𝑥𝑖) = 1/𝑛 so hat: 

𝐻(𝑋) = 𝐻(𝑋)𝑚𝑎𝑥

= −[
1

𝑛
log𝑎 (

1

𝑛
)] × 𝑛 = −log𝑎 (

1

𝑛
) = log𝑎𝑛  𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

And 𝐻(𝑋) = 0 if one of the message has the prob of a certain event. 

 

Source Entropy Rate: 

It is the average rate of amount of information produced per second. 

𝑅(𝑋) = 𝐻(𝑋) × 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑦𝑚𝑏𝑜𝑙𝑠   =  
𝑏𝑖𝑡𝑠

𝑠𝑒𝑐
= 𝑏𝑝𝑠 

The unit of H(X) is bits/symbol and the rate of producing the symbols is 

symbol/sec, so that the unit of R(X) is bits/sec. 

Sometimes  𝑅(𝑋) =
𝐻(𝑋)

𝜏̅
,     

𝜏̅ = ∑ 𝜏𝑖𝑃(𝑥𝑖)

𝑛

𝑖=1

 

𝜏̅ is the average time duration of symbols, 𝜏𝑖 is the time duration of the 

symbol 𝑥𝑖. 
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Example : 

A source produces dots ‘.’ And dashes ‘-‘ with P(dot)=0.65. If the time 

duration of dot is 200ms and that for a dash is 800ms. Find the average 

source entropy rate. 

Solution: 

𝑃(𝑑𝑎𝑠ℎ) = 1 − 𝑃(𝑑𝑜𝑡) = 1 − 0.65 = 0.35 

𝐻(𝑋) = −[0.65log2(0.65) + 0.35log2(0.35)] = 0.934 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

𝜏̅ = 0.2 × 0.65 + 0.8 × 0.35 = 0.41 𝑠𝑒𝑐 

𝑅(𝑋) =
𝐻(𝑋)

𝜏̅
=

0.34

0.41
= 2.278 𝑏𝑝𝑠 

Mutual Information: 

Consider the set of symbols 𝑥1, 𝑥2, … . , 𝑥𝑛, the 

transmitter 𝑇𝑥 my produce. The receiver 𝑅𝑥 may receive 

𝑦1, 𝑦2 … … … . 𝑦𝑚. Theoretically, if the noise and 

jamming is neglected, then the set X=set Y. However and 

due to noise and jamming, there will be a conditional 

probability 𝑃(𝑦𝑗 ∣ 𝑥𝑖): 

1- 𝑃(𝑥𝑖)  to be what is so called the apriori prob of the 

symbol 𝑥𝑖, which is the prob of selecting 𝑥𝑖 for transmission. 

2- 𝑃(𝑦𝑗 ∣ 𝑥𝑖) to be what is called the aposteriori prob of the symbol 𝑥𝑖 after 

the reception of 𝑦𝑗. 

The amount of information that 𝑦𝑗 provides about 𝑥𝑖 is called the 

mutual information between 𝑥𝑖 and 𝑦𝑖 . This is given by: 

𝐼(𝑥𝑖 , 𝑦𝑗) = log2 (
𝑎𝑝𝑜𝑠𝑡𝑒𝑟𝑜𝑟𝑖 𝑝𝑟𝑜𝑏

𝑎𝑝𝑟𝑖𝑜𝑟𝑖 𝑝𝑟𝑜𝑏
) = log2 (

𝑃( 𝑦𝑗 ∣∣ 𝑥𝑖 )

𝑃(𝑦𝑗)
) 
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Properties of 𝑰(𝒙𝒊, 𝒚𝒋): 

1- It is symmetric, 𝐼(𝑥𝑖 , 𝑦𝑗) = 𝐼(𝑦𝑗 , 𝑥𝑖). 

2- 𝐼(𝑥𝑖 , 𝑦𝑗) > 0 if aposteriori prob> apriori prob, 𝑦𝑗 provides +ve 

information about 𝑥𝑖. 

3- 𝐼(𝑥𝑖 , 𝑦𝑗) = 0 if aposteriori prob= apriori prob, which is the case of 

statistical independence when 𝑦𝑗 provides no information about 𝑥𝑖. 

4- 𝐼(𝑥𝑖 , 𝑦𝑗) < 0 if aposteriori prob< apriori prob, 𝑦𝑗 provides -ve 

information about 𝑥𝑖, or 𝑦𝑗  adds ambiguity. 

Also 𝐼(𝑥𝑖 , 𝑦𝑗) = log2 (
𝑃( 𝑥𝑖∣∣𝑦𝑗 )

𝑃(𝑥𝑖)
) 

Example:  

Show that I(X, Y) is zero for extremely noisy channel. 

Solution: 

 For extremely noisy channel, then 𝑦𝑗gives no information about 𝑥𝑖 the 

receiver can’t decide anything about 𝑥𝑖 as if we transmit a deterministic signal 

𝑥𝑖 but the receiver receives noise like signal 𝑦𝑗 that is completely has no 

correlation with 𝑥𝑖. Then 𝑥𝑖 and 𝑦𝑗 are statistically independent so that 

𝑃( 𝑥𝑖 ∣∣ 𝑦𝑗 ) = 𝑃(𝑥𝑖)𝑎𝑛𝑑 𝑃( 𝑦𝑗 ∣∣ 𝑥𝑖 ) = 𝑃(𝑥𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗, 𝑡ℎ𝑒𝑛: 

𝐼(𝑥𝑖 , 𝑦𝑗) = log21 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 & 𝑗, 𝑡ℎ𝑒𝑛 𝐼(𝑋, 𝑌) = 0 

 

 

Transinformation (average mutual information): 

It is the statistical average of all pair 𝐼(𝑥𝑖 , 𝑦𝑗) , 𝑖 = 1, 2, … . . , 𝑛, 𝑗 =

1, 2, … . . , 𝑚. 

This is denoted by 𝐼(𝑋, 𝑌) and is given by: 
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𝐼(𝑋, 𝑌) = ∑ ∑ 𝐼(𝑥𝑖 , 𝑦𝑗)𝑃(𝑥𝑖 , 𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

log2 (
𝑃( 𝑦𝑗 ∣∣ 𝑥𝑖 )

𝑃(𝑦𝑗)
)

𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙
 

or 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

log2 (
𝑃( 𝑥𝑖 ∣∣ 𝑦𝑗 )

𝑃(𝑥𝑖)
)  𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

Expand above equation: 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑃(𝑥𝑖, 𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

log2 (𝑃( 𝑥𝑖 ∣∣ 𝑦𝑗 )) − ∑ ∑ 𝑃(𝑥𝑖, 𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

log2(𝑃(𝑥𝑖)) 

And we have 

∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑚

𝑗=1

= 𝑝(𝑥𝑖) 

And by substituting: 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑃(𝑥𝑖, 𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

log2 (𝑃( 𝑥𝑖 ∣∣ 𝑦𝑗 )) − ∑ 𝑃(𝑥𝑖)

𝑛

𝑖=1

log2(𝑃(𝑥𝑖)) 

Or      𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋 ∣ 𝑌) 

Similarly   𝐼(𝑋, 𝑌) = 𝐻(𝑌) − 𝐻(𝑌 ∣ 𝑋)  

Marginal Entropies: 

Marginal entropies is a term usually used to denote both source entropy 

H(X) defined as before and the receiver entropy H(Y) given by: 

  

𝐻(𝑌) = − ∑ 𝑃(𝑦𝑗)

𝑚

𝑗=1

log2𝑃(𝑦𝑗)             
𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙
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Joint entropy and conditional entropy: 

The average information associated with the pair (𝑥𝑖 , 𝑦𝑗) is called joint or 

system entropy H(X,Y): 

𝐻(𝑋, 𝑌) = 𝐻(𝑋𝑌)

= − ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑥𝑖 , 𝑦𝑗)       𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙       

The average amount of information associated with the pairs 𝑃(𝑥𝑖 ∣  𝑦𝑗) 

and 𝑃(𝑦𝑗 ∣  𝑥𝑖)  are called conditional entropies 𝐻( 𝑌 ∣ 𝑋 )𝑎𝑛𝑑 𝐻(𝑋 ∣ 𝑌), 

and given by: 

𝐻(𝑌 ∣ 𝑋) = − ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑦𝑗 ∣ 𝑥𝑖)       𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

Return to first equation, we have: 𝑃(𝑥𝑖 , 𝑦𝑗) = 𝑃(𝑥𝑖)𝑃(𝑦𝑗 ∣ 𝑥𝑖), put inside 

log term 

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑥𝑖)

− ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑦𝑗 ∣ 𝑥𝑖) 

But 

∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑚

𝑗=1

= 𝑃(𝑥𝑖) 

Put it in above equation yields: 

𝐻(𝑋, 𝑌) = − ∑ 𝑃(𝑥𝑖)

𝑛

𝑖=1

log2𝑃(𝑥𝑖) − ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑦𝑗 ∣ 𝑥𝑖) 

So that  𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌 ∣ 𝑋) 
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Example : 

The joint probability of a system is given by: 

 

𝑃(𝑋, 𝑌) =

𝑥1

𝑥2

𝑥3

[
0.5           0.25
0           0.125

0.0625    0.0625
] 

Find: 

1- Marginal entropies.      2- Joint entropy 

3- Conditional entropies.    4- The mutual information between x1 and y2. 

5- The transinformation.      6- Draw the channel model. 

1- 𝑃(𝑋) = [
𝑥1 𝑥2 𝑥3

0.75 0.125 0.125
]        𝑃(𝑌) = [

𝑦1 𝑦2

0.5625 0.4375
] 

𝐻(𝑋) = −[0.75 ln(0.75) + 2 × 0.125 ln(0.125)]/𝑙𝑛2

= 1.06127 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙  

𝐻(𝑌) = −[0.5625 ln(0.5625) + 0.4375 ln(0.4375)]/𝑙𝑛2

= 0.9887 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙  

2-  

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑥𝑖 , 𝑦𝑗) 

𝐻(𝑋, 𝑌)

= −
[0.5ln(0.5) + 0.25 ln(0.25) + 0.125 ln(0.125) + 2 × 0.0625 ln(0.0625)]

𝑙𝑛2

= 1.875            𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

3- 𝐻( 𝑌 ∣ 𝑋 ) = 𝐻(𝑋, 𝑌) − 𝐻(𝑋) = 1.875 − 1.06127 =

0.813  
𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙
 

𝐻( 𝑋 ∣ 𝑌 ) = 𝐻(𝑋, 𝑌) − 𝐻(𝑌) = 1.875 − 0.9887

= 0.886 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 
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4- 𝐼(𝑥1, 𝑦2) = log2 (
𝑃( 𝑥1∣∣𝑦2 )

𝑃(𝑥1)
) , 𝑏𝑢𝑡 𝑃( 𝑥1 ∣∣ 𝑦2 ) = 𝑃(𝑥1, 𝑦2)/𝑃(𝑦2) 

𝐼(𝑥1, 𝑦2) = log2 (
𝑃(𝑥1,𝑦2)

𝑃(𝑥1)𝑃( 𝑦2)
)=log2

0.25

0.75×0.4375
= −0.3923   𝑏𝑖𝑡𝑠  

That means y2 gives ambiguity about x1 

5-  𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻( 𝑋 ∣ 𝑌 ) = 1.06127 − 0.8863 =

0.17497 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙. 

6- To draw the channel model, must find P(Y∣X) matrix from P(X, Y) 

matrix by dividing its rows by the corresponding P(xi): 

𝑃(𝑋 ∣  𝑌) =

𝑥1

𝑥2

𝑥3

[

0.5/0.75           0.25/0.75
0/0.125           0.125/0.125

0.0625/0.125    0.0625/0.125
]

=

𝑥1

𝑥2

𝑥3

[
2/3        1/3
0               1

0.5           0.5
] 

 

 

Venn diagrams: 

The Venn diagrams is a helpful mean to understand the relations between 

mutual information and conditional entropies as shown below: 
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Chapter Two 

2.1- Channel: 

In telecommunications and computer networking, a communication channel 

or channel, refers either to a physical transmission medium such as a wire, or to 

a logical connection over a multiplexed medium such as a radio channel. A channel is 

used to convey an information signal, for example a digital bit stream, from one or 

several senders (or transmitters) to one or several receivers. A channel has a certain 

capacity for transmitting information, often measured by its bandwidth in Hz or its data 

rate in bits per second. 

  

2.2- Binary symmetric channel (BSC) 

 It is a common communications channel model used in coding theory and information 

theory. In this model, a transmitter wishes to send a bit (a zero or a one), and the receiver 

receives a bit. It is assumed that the bit is usually transmitted correctly, but that it will 

be "flipped" with a small probability (the "crossover probability").  

 

 

 

 

A binary symmetric channel with crossover probability p denoted by BSCp, is a 

channel with binary input and binary output and probability of error p; that is, if X is the 

transmitted random variable and Y the received variable, then the channel is 

characterized by the conditional probabilities: 

Pr( 𝑌 = 0 ∣ 𝑋 = 0 ) = 1 − 𝑃 

Pr(𝑌 = 0 ∣ 𝑋 = 1 ) = 𝑃 

Pr(𝑌 = 1 ∣ 𝑋 = 0 ) = 𝑃 

Pr( 𝑌 = 1 ∣ 𝑋 = 1 ) = 1 − 𝑃 

1 1 

0 
1-P 

P 

P 

1-P 

0 
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2.3- Ternary symmetric channel (TSC): 

The transitional probability of TSC is: 

𝑃( 𝑌 ∣ 𝑋 ) =

𝑥1

𝑥2

𝑥3

[

𝑦1               𝑦2         𝑦3

1 − 2𝑃𝑒       𝑃𝑒            𝑃𝑒   
𝑃𝑒           1 − 2𝑃𝑒      𝑃𝑒

𝑃𝑒            𝑃𝑒      1 − 2𝑃𝑒

] 

The TSC is symmetric but not very practical since practically 𝑥1 and 𝑥3 are not affected 

so much as 𝑥2. In fact the interference between 𝑥1 and 𝑥3 is much less than the 

interference between 𝑥1 and 𝑥2 or   𝑥2 and 𝑥3. 

  

 

 

 

Hence the more practice but nonsymmetric channel has the trans. prob. 

𝑃(𝑌 ∣ 𝑋 ) =

𝑥1

𝑥2

𝑥3

[

𝑦1               𝑦2         𝑦3

1 − 𝑃𝑒       𝑃𝑒           0  
𝑃𝑒           1 − 2𝑃𝑒      𝑃𝑒

0           𝑃𝑒     1 − 𝑃𝑒

] 

Where 𝑥1 interfere with 𝑥2 exactly the same as interference between 𝑥2 and 𝑥3, but 𝑥1 

and 𝑥3 are not interfere. 
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2.4- Special Channels: 

1-  Lossless channel: It has only one nonzero element in each column of the 

transitional matrix P(Y∣X). 

𝑃(𝑌 ∣ 𝑋 ) =

𝑥1

𝑥2

𝑥3

[

𝑦1               𝑦2         𝑦3          𝑦4        𝑦5

3/4                1/4           0             0           0  
0                0            1/3            2/3          0

0                 0             0             0          1

] 

This channel has H(X∣Y)=0 and I(X, Y)=H(X) with zero losses entropy. 

2- Deterministic channel: It has only one nonzero element in each row, the 

transitional matrix P(Y∣X), as an example: 

𝑃(𝑌 ∣ 𝑋 ) =

𝑥1

𝑥2

𝑥3

[
 
 
 
 
 
𝑦1         𝑦2         𝑦3    
 1           0            0   
1           0           0  
0           0            1 
0           1            0
0           1            0 ]

 
 
 
 
 

 

This channel has H(Y∣X)=0 and I(Y, X)=H(Y) with zero noisy entropy. 

3- Noiseless channel: It has only one nonzero element in each row and column, the 

transitional matrix P(Y∣X), i.e. it is an identity matrix, as an example: 

𝑃(𝑌 ∣ 𝑋 ) =

𝑥1

𝑥2

𝑥3

[

𝑦1         𝑦2         𝑦3 
1          0           0
0          1           0
0          0           1

] 

This channel has H(Y∣X)= H(X∣Y)=0 and I(Y, X)=H(Y)=H(X). 

2.5- Shannon’s theorem: 

1- A given communication system has a maximum rate of information C known as 

the channel capacity. 

2- If the information rate R is less than C, then one can approach arbitrarily small 

error probabilities by using intelligent coding techniques. 

3- To get lower error probabilities, the encoder has to work on longer blocks of 

signal data. This entails longer delays and higher computational requirements. 
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Thus, if R ≤ C then transmission may be accomplished without error in the presence 

of noise. The negation of this theorem is also true: if R > C, then errors cannot be 

avoided regardless of the coding technique used. 

Consider a bandlimited Gaussian channel operating in the presence of additive 

Gaussian noise: 

 

The Shannon-Hartley theorem states that the channel capacity is given by: 

𝐶 = 𝐵𝑙𝑜𝑔2 (1 +
𝑆

𝑁
) 

Where C is the capacity in bits per second, B is the bandwidth of the channel in Hertz, 

and S/N is the signal-to-noise ratio. 

2.6- Discrete Memoryless Channel: 

The Discrete Memoryless Channel (DMC) has an input X and an output Y. At any given 

time (t), the channel output Y= y only depends on the input X = x at that time (t) and it 

does not depend on the past history of the input. DMC is represented by the conditional 

probability of the output Y = y given the input X = x, or P(YX). 

 

 

 

2.7 Binary Erasure Channel (BEC): 

The Binary Erasure Channel (BEC) model are widely used to represent channels or links 

that “losses” data. Prime examples of such channels are Internet links and routes. A 

BEC channel has a binary input X and a ternary output Y. 

X Channel

P(YX) 

Y 
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Note that for the BEC, the probability of “bit error” is zero. In other words, the 

following conditional probabilities hold for any BEC model: 

Pr( 𝑌 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒" ∣ 𝑋 = 0 ) = 𝑃 

Pr( 𝑌 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒" ∣ 𝑋 = 1 ) = 𝑃 

Pr( 𝑌 = 0 ∣ 𝑋 = 0 ) = 1 − 𝑃 

Pr( 𝑌 = 1 ∣ 𝑋 = 1 ) = 1 − 𝑃 

Pr( 𝑌 = 0 ∣ 𝑋 = 1 ) = 0 

Pr( 𝑌 = 1 ∣ 𝑋 = 0 ) = 0 
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Channel Capacity (Discrete channel) 

This is defined as the maximum of I(X,Y): 

𝐶 = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = max[𝐼(𝑋, 𝑌)]            𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

Physically it is the maximum amount of information each symbol can carry to the 

receiver. Sometimes this capacity is also expressed in bits/sec if related to the rate of 

producing symbols r: 

𝑅(𝑋, 𝑌) = 𝑟 × 𝐼(𝑋, 𝑌)          𝑏𝑖𝑡𝑠/ sec     𝑜𝑟 𝑅(𝑋, 𝑌) = 𝐼(𝑋, 𝑌)/ 𝜏̅  

1- Channel capacity of Symmetric channels:  

The symmetric channel have the following condition: 

a- Equal number of symbol in X&Y, i.e. P(Y∣X) is a square matrix. 

b- Any row in P(Y∣X) matrix comes from some permutation of other rows. 

For example the following conditional probability of various channel types as shown: 

a- 𝑃(𝑌 ∣ 𝑋 ) = [
0.9 0.1
0.1 0.9

] is a BSC, because it is square matrix and 1st row is the 

permutation of 2nd row. 

b- 𝑃(𝑌 ∣ 𝑋 ) = [
0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

] is TSC, because it is square matrix and each 

row is a permutation of others. 

c- 𝑃(𝑌 ∣ 𝑋 ) = [
0.8 0.1 0.1
0.1 0.8 0.1

] is a non-symmetric since since it is not square 

although each row is permutation of others. 

d- 𝑃(𝑌 ∣ 𝑋 ) = [
0.8 0.1 0.1
0.1 0.7 0.2
0.1 0.1 0.8

] is a non-symmetric although it is square since 2nd 

row is not permutation of other rows. 

The channel capacity is defined as max [𝐼(𝑋, 𝑌)]: 

𝐼(𝑋, 𝑌) = 𝐻(𝑌) − 𝐻(𝑌 ∣ 𝑋 ) 
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𝐼(𝑋, 𝑌) = 𝐻(𝑌) + ∑∑𝑃(𝑥𝑖 , 𝑦𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑦𝑗 ∣ 𝑥𝑖) 

 

But we have 

𝑃(𝑥𝑖 , 𝑦𝑗) = 𝑃(𝑥𝑖)𝑃(𝑦𝑗 ∣ 𝑥𝑖)        𝑝𝑢𝑡 𝑖𝑛 𝑎𝑏𝑜𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑦𝑖𝑒𝑙𝑑𝑒𝑠:  

 

𝐼(𝑋, 𝑌) = 𝐻(𝑌) + ∑∑𝑃(𝑥𝑖)𝑃(𝑦𝑗 ∣ 𝑥𝑖)

𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑦𝑗 ∣ 𝑥𝑖) 

If the channel is symmetric the quantity: 

∑𝑃(𝑦𝑗 ∣ 𝑥𝑖)log2𝑃(𝑦𝑗 ∣ 𝑥𝑖) = 𝐾

𝑚

𝑗=1

 

Where K is constant and independent of the row number i so that the equation 

becomes: 

𝐼(𝑋, 𝑌) = 𝐻(𝑌) + 𝐾 ∑𝑃(𝑥𝑖)

𝑛

𝑖=1

 

Hence          𝐼(𝑋, 𝑌) = 𝐻(𝑌) + 𝐾         for symmetric channels 

Max of 𝐼(𝑋, 𝑌) = max[𝐻(𝑌) + 𝐾] = max[𝐻(𝑌)] + 𝐾 

When Y has equiprobable symbols then max[𝐻(𝑌)] = 𝑙𝑜𝑔2𝑚 

Then  

𝐼(𝑋, 𝑌) = 𝑙𝑜𝑔2𝑚 + 𝐾 

Or 

𝐶 = 𝑙𝑜𝑔2𝑚 + 𝐾 
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Example 9: 

For the BSC shown:  

 

 

Find the channel capacity and efficiency if 𝐼(𝑥1) = 2𝑏𝑖𝑡𝑠 

Solution: 

𝑃(𝑌 ∣ 𝑋 ) = [
0.7 0.3
0.3 0.7

] 

Since the channel is symmetric then  

𝐶 = 𝑙𝑜𝑔2𝑚 + 𝐾      and 𝑛 = 𝑚 

 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑎𝑛𝑑 𝑚 𝑎𝑟𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑟𝑜𝑤 𝑎𝑛𝑑 𝑐𝑜𝑙𝑢𝑚𝑛 𝑟𝑒𝑝𝑒𝑠𝑡𝑖𝑣𝑒𝑙𝑦  

𝐾 = 0.7𝑙𝑜𝑔20.7 + 0.3𝑙𝑜𝑔20.3 = −0.88129 

𝐶 = 1 − 0.88129 = 0.1187   𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

The channel efficiency  𝜂 =
𝐼(𝑋,𝑌)

𝐶
 

𝐼(𝑥1) = −𝑙𝑜𝑔2𝑃(𝑥1) = 2 

𝑃(𝑥1) = 2−2 = 0.25    𝑡ℎ𝑒𝑛 𝑃(𝑋) = [0.25     0.75]𝑇 

And we have 𝑃(𝑥𝑖 , 𝑦𝑗) = 𝑃(𝑥𝑖)𝑃(𝑦𝑗 ∣ 𝑥𝑖) so that 

𝑃(𝑋, 𝑌) = [
0.7 × 0.25 0.3 × 0.25
0.3 × 0.75 0.7 × 0.75

]=[
0.175 0.075
0.225 0.525

] 

𝑃(𝑌) = [0.4     0.6]    → 𝐻(𝑌) = 0.97095 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

𝐼(𝑋, 𝑌) = 𝐻(𝑌) + 𝐾 = 0.97095 − 0.88129 = 0.0896 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

Then 𝜂 =
0.0896

0.1187
= 75.6% 

 

 

 

 

 

0.7 

0.7 
Y1 

Y2 X2 

X1 
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Review questions: 

A binary source sending 𝑥1 with a probability of 0.4 and 𝑥2 with 0.6 probability 

through a channel with a probabilities of errors of 0.1 for 𝑥1 and 0.2 for 𝑥2.Determine: 

1- Source entropy.  

2- Marginal entropy. 

3- Joint entropy. 

4- Conditional entropy 𝐻(𝑌𝑋). 

5- Losses entropy 𝐻(𝑋𝑌). 

6- Transinformation. 

Solution: 

1- The channel diagram: 

 

 

 

 

  

Or 𝑃(𝑌X) = [
0.9        0.1
0.2        0.8

] 

𝐻(𝑋) = −∑𝑝(𝑥𝑖)

𝑛

𝑖=1

𝑙𝑜𝑔2𝑝(𝑥𝑖) 

𝐻(𝑋) = −
[0.4 ln(0.4) + 0.6 ln(0.6)]

𝑙𝑛2
= 0.971

𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙
 

2- 𝑃(𝑋, 𝑌) =  𝑃(𝑌X) × 𝑃(𝑋) 

∴ 𝑃(𝑋, 𝑌) = [
0.9 × 0.4        0.1 × 0.4
0.2 × 0.6        0.8 × 0.6

] = [
0.36        0.04
0.12        0.48

] 

∴ 𝑃(𝑌) = [0.48      0.52] 

𝐻(𝑌) = −∑𝑝(𝑦𝑗)

𝑚

𝑗=1

𝑙𝑜𝑔2𝑝(𝑦𝑗) 

𝐻(𝑌) = −
[0.48 ln(0.48) + 0.52 ln(0.52)]

ln(2)
= 0.999 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

 

 

0.9 

0.8 

0.1 

0.2 

0.6 

0.4 𝑥1 

𝑥2 

𝑦1 

𝑦2 
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3- 𝐻(𝑋, 𝑌) 

𝐻(𝑋, 𝑌) = −∑∑𝑃(𝑥𝑖 , 𝑦𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑥𝑖 , 𝑦𝑗) 

𝐻(𝑋, 𝑌) = −
[0.36 ln(0.36) + 0.04 ln(0.04) + 0.12 ln(0.12) + 0.48 ln(0.48)]

ln(2)

= 1.592 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

4- 𝐻(𝑌X) 

𝐻(𝑌X) == −∑∑𝑃(𝑥𝑖 , 𝑦𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

log2𝑃(𝑦𝑗𝑥𝑖) 

𝐻(𝑌X) = −
[0.36 ln(0.9) + 0.12 ln(0.2) + 0.04 ln(0.1) + 0.48 ln(0.8)]

ln(2)

= 0.621
𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙
 

Or     𝐻(𝑌X) = 𝐻(𝑋, 𝑌) − 𝐻(𝑋) = 1.592 − 0.971 = 0.621
𝑏𝑖𝑡𝑠

𝑠𝑦𝑚𝑏𝑜𝑙
 

5- 𝐻(𝑋Y) =  𝐻(𝑋, 𝑌) − 𝐻(𝑌) = 1.592 − 0.999 = 0.593 𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

6- 𝐼(𝑋, 𝑌) = 𝐻(𝑋) −  𝐻(𝑋Y)  = 0.971 − 0.593 = 0.378 bits/symbol 

 

2- Cascading of Channels 

If two channels are cascaded, then the overall transition matrix is the product of the two 

transition matrices. 

      )/()./()/( yzpxypxzp   

      
matrix

kn )(        
matrix

mn )(    
matrix

km )(   

 

 

 

For the series information channel, the overall channel capacity is not exceed any of 

each channel individually.  

𝐼(𝑋, 𝑍) ≤ 𝐼(𝑋, 𝑌)   &    𝐼(𝑋, 𝑍) ≤ 𝐼(𝑌, 𝑍) 

 

 

 

Channel 1 

 

Channel 1 
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Example: 

Find the transition matrix )/( xzp  for the cascaded channel shown. 
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Chapter Three 

Source Coding 

 

1- Sampling theorem: 

Sampling of the signals is the fundamental operation in digital communication. A 

continuous time signal is first converted to discrete time signal by sampling process. 

Also it should be possible to recover or reconstruct the signal completely from its 

samples. 

The sampling theorem state that: 

i- A band limited signal of finite energy, which has no frequency components higher 

than W Hz, is completely described by specifying the values of the signal at instant 

of time separated by 1/2W second and  

ii- A band limited signal of finite energy, which has no frequency components higher 

than W Hz, may be completely recovered from the knowledge of its samples taken 

at the rate of 2W samples per second. 

When the sampling rate is chosen  𝑓𝑠 = 2𝑓𝑚 each spectral replicate is separated from 

each of its neighbors by a frequency band exactly equal to 𝑓𝑠 hertz, and the analog 

waveform ca theoretically be completely recovered from the samples, by the use of 

filtering. It should be clear that if  𝑓𝑠 > 2𝑓𝑚, the replications will be move farther apart 

in frequency making it easier to perform the filtering operation.  

When the sampling rate is reduced, such that 𝑓𝑠 < 2𝑓𝑚, the replications will overlap, as 

shown in figure below, and some information will be lost. This phenomenon is called 

aliasing. 
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Sampled spectrum 𝑓𝑠 > 2𝑓𝑚 

 

Sampled spectrum 𝑓𝑠 < 2𝑓𝑚 

 

A bandlimited signal having no spectral components above 𝑓𝑚 hertz can be 

determined uniquely by values sampled at uniform intervals of     𝑇𝑠 ≤
1

2𝑓𝑚
𝑠𝑒𝑐. 

The sampling rate is 𝑓𝑠 =
1

𝑇𝑠
 

So that 𝑓𝑠 ≥ 2𝑓𝑚. The sampling rate 𝑓𝑠 = 2𝑓𝑚 is called Nyquist rate. 

 

Example: Find the Nyquist rate and Nyquist interval for the following signals. 

i- 𝑚(𝑡) =
sin⁡(500𝜋𝑡)

𝜋𝑡
 

ii- 𝑚(𝑡) =
1

2𝜋
cos(4000𝜋𝑡) cos(1000𝜋𝑡) 

Solution:  

i- 𝑤𝑡 = 500𝜋𝑡⁡⁡⁡⁡⁡⁡⁡⁡ ∴ 2𝜋𝑓 = 500𝜋⁡⁡⁡⁡⁡⁡ → 𝑓 = 250𝐻𝑧 

Nyquist interval =
1

2𝑓𝑚𝑎𝑥
=

1

2×250
= 2⁡𝑚𝑠𝑒𝑐. 
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Nyquist rate =2𝑓𝑚𝑎𝑥 = 2 × 250 = 500𝐻𝑧 

 

ii- 𝑚(𝑡) =
1

2𝜋
[
1

2
{cos(4000𝜋𝑡 − 1000𝜋𝑡) + cos(4000𝜋𝑡 + 1000𝜋𝑡)}] 

=
1

4𝜋
{cos(3000𝜋𝑡) + cos(5000𝜋𝑡)} 

Then the highest frequency is 2500Hz 

Nyquist interval =
1

2𝑓𝑚𝑎𝑥
=

1

2×2500
= 0.2⁡𝑚𝑠𝑒𝑐. 

Nyquist rate =2𝑓𝑚𝑎𝑥 = 2 × 2500 = 5000𝐻𝑧 

 

H. W: 

Find the Nyquist interval and Nyquist rate for the following: 

i- 
1

2𝜋
cos(400𝜋𝑡) . cos(200𝜋𝑡) 

ii- 
1

𝜋
𝑠𝑖𝑛𝜋𝑡 

Example: 

A waveform [20+20sin(500t+30o] is to be sampled periodically and reproduced 

from these sample values. Find maximum allowable time interval between 

sample values, how many sample values are needed to be stored in order to 

reproduce 1 sec of this waveform?. 

Solution: 

𝑥(𝑡) = 20 + 20 sin(500𝑡 + 300) 

𝑤 = 500 → 2𝜋𝑓 = 500 → 𝑓 = 79.58⁡𝐻𝑧 

Minimum sampling rate will be twice of the signal frequency: 

𝑓𝑠(min) = 2 × 79.58 = 159.15⁡𝐻𝑧 

𝑇𝑠(𝑚𝑎𝑥) =
1

𝑓𝑠(min)
=

1

159.15
= 6.283⁡𝑚𝑠𝑒𝑐. 
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Number of sample in 1𝑠𝑒𝑐 =
1

6.283𝑚𝑠𝑒𝑐
= 159.16 ≈ 160⁡𝑠𝑎𝑚𝑝𝑙𝑒 

 

2- Source coding:  

 An important problem in communications is the efficient representation of data 

generated by a discrete source. The process by which this representation is 

accomplished is called source encoding. An efficient source encoder must satisfies two 

functional requirements: 

i- The code words produced by the encoder are in binary form. 

ii-  The source code is uniquely decodable, so that the original source sequence can 

be reconstructed perfectly from the encoded binary sequence. 

 

The entropy for a source with statistically independent symbols: 

𝐻(𝑌) = −∑𝑃(𝑦𝑗)

𝑚

𝑗=1

log2𝑃(𝑦𝑗) 

We have: 

max[𝐻(𝑌)] = 𝑙𝑜𝑔2𝑚 

A code efficiency can therefore be defined as: 

𝜂 =
𝐻(𝑌)

max[𝐻(𝑌)]
× 100 

The overall code length, L, can be defined as the average code word length: 

𝐿 =∑𝑃(𝑥𝑗)𝑙𝑗

𝑚

𝑗=1

⁡⁡⁡⁡⁡⁡⁡𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 
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The code efficiency can be found by: 

𝜂 =
𝐻(𝑌)

L
× 100 

Not that                   max[𝐻(𝑌)] ⁡⁡⁡⁡⁡𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 = 𝐿⁡⁡⁡𝑏𝑖𝑡𝑠/𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 

 

i- Fixed- Length Code Words: 

If the alphabet X consists of the 7 symbols {a, b, c, d, e, f, g}, then the following 

fixed-length code of block length L = 3 could be used.  

C(a) = 000 

C(b) = 001 

C(c) = 010 

C(d) = 011 

C(e) = 100 

C(f) = 101 

C(g) = 110. 

The encoded output contains L bits per source symbol. For the above example 

the source sequence bad... would be encoded into 001000011... . Note that the 

output bits are simply run together (or, more technically, concatenated). This 

method is nonprobabilistic; it takes no account of whether some symbols occur 

more frequently than others, and it works robustly regardless of the symbol 

frequencies. 

This is used when the source produces almost equiprobable messages 

)(...)()()( 321 nxpxpxpxp  , then 
Cn Lllll  ...321
 and for binary coding 

then: 

1- nLC 2log           bit/message             if 
rn 2       ( ,....16,8,4,2n and r is an 

integer) which gives %100  

2-  1][log2  nIntLC
    bits/message                if 

rn 2  which gives less efficiency 

Example 

For ten equiprobable messages coded in a fixed length code then  
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10

1
)( ixp  and 41]10[log2  IntLC

 bits 

and %048.83%100
4

10log
%100

)( 2 
CL

XH
  

Example: For eight equiprobable messages coded in a fixed length code then  

8

1
)( ixp  and 38log2 CL  bits and %100%100

3

3
  

Example: Find the efficiency of a fixed length code used to encode messages obtained 

from throwing a fair die (a) once, (b) twice, (c) 3 times. 

Solution   

a- For a fair die, the messages obtained from it are equiprobable with a probability 

of 
6

1
)( ixp  with 6n . 

     31]6[log2  IntLC
 bits/message 

     %165.86%100
3

6log
%100

)( 2 
CL

XH
  

b-  For two throws then the possible messages are 3666 n  messages with 

equal probabilities  

61]36[log2  IntLC
 bits/message 6  bits/2-symbols 

while 6log)( 2XH  bits/symbol    %165.86%100
)(2





CL

XH
  

c-  For three throws then the possible messages are 216666 n  with equal 

probabilities 

    81]216[log2  IntLC
 bits/message 8  bits/3-symbols 

     while 6log)( 2XH  bits/symbol     %936.96%100
)(3





CL

XH
  
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ii- Variable-Length Code Words 

When the source symbols are not equally probable, a more efficient encoding method 

is to use variable-length code words. For example, a variable-length code for the 

alphabet X = {a, b, c} and its lengths might be given by  

C(a)= 0         l(a)=1 

C(b)= 10       l(b)=2 

C(c)= 11        l(c)=2 

The major property that is usually required from any variable-length code is that of 

unique decodability. For example, the above code C for the alphabet X = {a, b, c} is 

soon shown to be uniquely decodable. However such code is not uniquely decodable, 

even though the codewords are all different. If the source decoder observes 01, it 

cannot determine whether the source emitted (a b) or (c). 

 Prefix-free codes: A prefix code is a type of code system (typically a variable-

length code) distinguished by its possession of the "prefix property", which requires 

that there is no code word in the system that is a prefix (initial segment) of any other 

code word in the system. For example: 

{𝑎 = 0, 𝑏 = 110, 𝑐 = 10, 𝑑 = 111}⁡𝑖𝑠⁡𝑎⁡𝑝𝑟𝑒𝑓𝑖𝑥⁡𝑐𝑜𝑑𝑒. 

When message probabilities are not equal, then we use variable length codes. The 

following properties need to be considered when attempting to use variable length 

codes: 

1) Unique decoding: 

Example  

Consider a 4 alphabet symbols with symbols represented by binary digits as 

follows: 

0A  

01B  

11C  
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00D  

If we receive the code word 0011  it is not known whether the transmission was DC  

or AAC . This example is not, therefore, uniquely decodable. 

2) Instantaneous decoding:  

Example  

Consider a 4 alphabet symbols with symbols represented by binary digits as 

follows: 

0A  

10B  

110C  

111D  

This code can be instantaneously decoded since no complete codeword is a prefix of a 

larger codeword. This is in contrast to the previous example where A  is a prefix of both 

B  and D . This example is also a ‘comma code’ as the symbol zero indicates the end 

of a codeword except for the all ones word whose length is known. 

Example  

Consider a 4 alphabet symbols with symbols represented by binary digits as follows: 

0A  

01B  

011C  

111D  

The code is identical to the previous example but the bits are time reversed. It is still 

uniquely decodable but no longer instantaneous, since early codewords are now prefixes 

of later ones.  

Shannon Code  

For messages 1x , 2x , 
3x ,…

nx  with probabilities )( 1xp , )( 2xp , )( 3xp ,… )( nxp  then: 
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1) )(log2 ii xpl                         if 
r

ixp 









2

1
)(                  ,...}

8

1
,

4

1
,

2

1
{  

2) 1)](log[ 2  ii xpIntl             if 
r

ixp 









2

1
)(  

Also define                                





1

1

)(
i

k
ki xpF                   01  i  

then the codeword of 
ix  is the binary equivalent of 

iF  consisting of 
il  bits.  

  il

ii FC
2

  

where 
iC  is the binary equivalent of 

iF  up to 
il  bits. In encoding, messages must be 

arranged in a decreasing order of probabilities. 

 

Example  

Develop the Shannon code for the following set of messages,  

]05.008.01.012.015.02.03.0[)( xp  

then find: 

(a) Code efficiency, 

(b)  )0(p  at the encoder output. 

Solution 

ix  )( ixp  
il  

iF  
iC  

i0  

1x  0.3 2 0 00 2 

2x  0.2 3 0.3 010 2 

3x  0.15 3 0.5 100 2 

4x  0.12 4 0.65 1010 2 

5x  0.10 4 0.77 1100 2 

6x  0.08 4 0.87 1101 1 

7x  0.05 5 0.95 11110 1 
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(a) To find the code efficiency, we have 

1.3)(
7

1


i

iiC xplL  bits/message. 

6029.2)(log)()(
7

1
2  


i

i
i xpxpXH  bits/message. 

%965.83%100
)(


CL

XH
  

(b) )0(p  at the encoder output is 

1.3

05.008.02.024.03.04.06.0
)(0

)0(

7

1 





C

i
ii

L

xp

p  

603.0)0( p  

Example  

Repeat the previous example using ternary coding. 

Solution 

1) )(log3 ii xpl                       if 
r

ixp 









3

1
)(                  ,...}

27

1
,

9

1
,

3

1
{  

To find  

    1 

    0 

    1 

    0 

To find  

    1 

     1 

    0 

    0 

To find  

        0 

        0 

To find  

    0 

     1 

To find  

     1 

    0 0*2=0               0

0.2 * 2 = 0.4       0
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2) 1)](log[ 3  ii xpIntl        if r

ixp 









3

1
)(

         and           il

ii FC
3

                           

ix  )( ixp  
il  

iF  
iC  

i0  

1x  0.3 2 0 00 2 

2x  0.2 2 0.3 02 1 

3x  0.15 2 0.5 11 0 

4x  0.12 2 0.65 12 0 

5x  0.10 3 0.77 202 1 

6x  0.08 3 0.87 212 0 

7x  0.05 3 0.95 221 0 

 

 

 

 

 

 

 

 (a) To find the code efficiency, we have 

23.2)(
7

1


i

iiC xplL  ternary unit/message. 

642.1)(log)()(
7

1
3  


i

i
i xpxpXH  ternary unit/message. 

%632.73%100
)(


CL

XH
  

(b) )0(p  at the encoder output is 

To find  

        0 

To find  

     0 

To find  

     1 

     1 

To find  

     1 

    2 

To find  

     2 

     0 
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23.2

1.02.06.0
)(0

)0(

7

1 





C

i
ii

L

xp

p  

404.0)0( p  

Shannon- Fano Code: 

In Shannon–Fano coding, the symbols are arranged in order from most probable to 

least probable, and then divided into two sets whose total probabilities are as close 

as possible to being equal. All symbols then have the first digits of their codes 

assigned; symbols in the first set receive "0" and symbols in the second set receive 

"1". As long as any sets with more than one member remain, the same process is 

repeated on those sets, to determine successive digits of their codes. 

Example: 

The five symbols which have the following frequency and probabilities, design 

suitable Shannon-Fano binary code. Calculate average code length, source entropy 

and efficiency.   

Symbol count Probabilities Binary 

codes 

Length 

A 15 0.385 00 2 

B 7 0.1795 01 2 

C 6 0.154 10 2 

D 6 0.154 110 3 

E 5 0.128 111 3 

 

The average code word length: 

𝐿 =∑𝑃(𝑥𝑗)𝑙𝑗

𝑚

𝑗=1
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𝐿 = 2 × 0.385 + 2 × 0.1793 + 2 × 0.154 + 3 × 0.154 + 3 × 0.128

= 2.28⁡𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

The source entropy is: 

𝐻(𝑌) = −∑𝑃(𝑦𝑗)

𝑚

𝑗=1

log2𝑃(𝑦𝑗) 

𝐻(𝑌) = −[0.385𝑙𝑛0.385 + 0.1793𝑙𝑛0.1793 + 2 × 0.154𝑙𝑛0.154

+ 0.128𝑙0.128]/𝑙𝑛2 

𝐻(𝑌) = 2.18567⁡𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

The code efficiency: 

𝜂 =
𝐻(𝑌)

L
× 100 =

2.18567

2.28
× 100 = 95.86% 

Example  

Develop the Shannon - Fano code for the following set of messages, 

]08.01.012.015.02.035.0[)( xp  then find the code efficiency. 

Solution 

ix  )( ixp  Code il  

1x  0.35 0 0  2 

2x  0.2 0 1  2 

3x  0.15 1 0 0 3 

4x  0.12 1 0 1 3 

5x  0.10 1 1 0 3 

6x  0.08 1 1 1 3 
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45.2)(
6

1


i

iiC xplL  bits/symbol 

396.2)(log)()(
6

1
2




i

ii xpxpXH
 bits/symbol 

%796.97%100
)(


CL

XH
  

Example  

Repeat the previous example using with 3r  

Solution 

ix  )( ixp  Code il  

1x  0.35 0  1 

2x  0.2 1 0 2 

3x  0.15 1 1 2 

4x  0.12 2 0 2 

5x  0.10 2 1 2 

6x  0.08 2 2 2 

 

65.1)(
6

1


i

iiC xplL     ternary unit/symbol 

512.1)(log)()(
6

1
3




i

ii xpxpXH  ternary unit/symbol 

%636.91%100
)(


CL

XH
  
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Huffman Code 

The Huffman coding algorithm comprises two steps, reduction and splitting. These 

steps can be summarized as follows: 

1) Reduction 

a) List the symbols in descending order of probability. 

b) Reduce the r  least probable symbols to one symbol with a probability 

equal to their combined probability. 

c) Reorder in descending order of probability at each stage. 

d) Repeat the reduction step until only two symbols remain. 

2) Splitting 

a) Assign r,...1,0  to the r final symbols and work backwards. 

b) Expand or lengthen the code to cope with each successive split. 

 

Example: Design Huffman codes for 𝐴 = {𝑎1, 𝑎2, …… . 𝑎5},⁡having the probabilities 

{0.2, 0.4, 0.2, 0.1, 0.1}.  
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The average code word length: 

𝐿 = 0.4 × 1 + 0.2 × 2 + 0.2 × 3 + 0.1 × 4 + 0.1 × 4 = 2.2⁡𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

The source entropy: 

𝐻(𝑌) = −[0.4𝑙𝑛0.4 + 2 × 0.2𝑙𝑛0.2 + 2 × 0.1𝑙𝑛0.1]/𝑙𝑛2 = 2.12193  bits/symbol 

The code efficiency: 

𝜂 =
2.12193

2.2
× 100 = 96.45% 

It can be design Huffman codes with minimum variance: 

 

The average code word length is still 2.2 bits/symbol. But variances are different! 

Example  

Develop the Huffman code for the following set of symbols 

Symbol A B C D E F G H 

Probability 0.1 0.18 0.4 0.05 0.06 0.1 0.07 0.04 
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Solution 

C 0.40 0.40 0.40 0.40 0.40 0.40 0.60 1.0 

         

B 0.18 0.18 0.18 0.19 0.23 0.37 0.40  

         

A 0.10 0.10 0.13 0.18 0.19 0.23   

         

F 0.10 0.10 0.10 0.13 0.18    

         

G 0.07 0.09 0.10 0.10     

         

E 0.06 0.07 0.09      

         

D 0.05 0.06       

         

H 0.04        

 

So we obtain the following codes 

Symbol A B C D E F G H 

Probability 0.1 0.18 0.4 0.05 0.06 0.1 0.07 0.04 

Codeword 011 001 1 00010 0101 0000 0100 00011 

il  3 3 1 5 4 4 4 5 

552.2)(log)()(
8

1
2  

i
ii xpxpXH  bits/symbol 

61.2)(
8

1


i

iiC xplL  bits/symbol 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 
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%778.97%100
)(


CL

XH
  

Data Compression: 

In computer science and information theory, data compression, source coding, or bit-

rate reduction involves encoding information using fewer bits than the original 

representation. Compression can be either lossy or lossless. 

Lossless data compression algorithms usually exploit statistical redundancy to 

represent data more concisely without losing information, so that the process is 

reversible. Lossless compression is possible because most real-world data has statistical 

redundancy. For example, an image may have areas of color that do not change over 

several pixels. 

Lossy data compression is the converse of lossless data compression. In these 

schemes, some loss of information is acceptable. Dropping nonessential detail from the 

data source can save storage space. There is a corresponding trade-off between 

preserving information and reducing size. 

Run-Length Encoding (RLE): 

Run-Length Encoding is a very simple lossless data compression technique that 

replaces runs of two or more of the same character with a number which represents the 

length of the run, followed by the original character; single characters are coded as 

runs of 1. RLE is useful for highly-redundant data, indexed images with many pixels 

of the same color in a row. 

Example:  

Input: AAABBCCCCDEEEEEEAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAA 

Output: 3A2B4C1D6E38A 

The input message to RLE encoder is a variable while the output code word is fixed, 

unlike Huffman code where the input is fixed while the output is varied. 

http://en.wikipedia.org/wiki/Lossy_compression
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Example : Consider these repeated pixels values in an image … 0 0 0 0 0 0 0 0 0 0 0 0 

5 5 5 5 0 0 0 0 0 0 0 0 We could represent them more efficiently as (12, 0)(4, 5)(8, 0)  

24 bytes reduced to 6 which gives a compression ratio of 24/6 = 4:1. 

Example :Original Sequence (1 Row): 111122233333311112222 can be encoded as: 

(4,1),(3,2),(6,3),(4,1),(4,2). 21 bytes reduced to 10 gives a compression ratio of 21/10 = 

21:10. 

Example : Original Sequence (1 Row): – HHHHHHHUFFFFFFFFFFFFFF  can be 

encoded as: (7,H),(1,U),(14,F) . 22 bytes reduced to 6 gives a compression ratio of 22/6 

= 11:3 . 

Savings Ratio : the savings ratio is related to the compression ratio and is a measure of 

the amount of redundancy between two representations (compressed and 

uncompressed). Let: 

N1 = the total number of bytes required to store an uncompressed (raw) source image. 

N2 = the total number of bytes required to store the compressed data.  

The compression ratio Cr is then defined as:  

𝐶𝑟 =
𝑁1
𝑁2

 

 Larger compression ratios indicate more effective compression  

 Smaller compression ratios indicate less effective compression 

 Compression ratios less than one indicate that the uncompressed representation 

has high degree of irregularity.  

The saving ratio Sr is then defined as : 

𝑆𝑟 =
(𝑁1 −𝑁2)

𝑁1
 

 Higher saving ratio indicate more effective compression while negative ratios are 

possible and indicate that the compressed image has larger memory size than the 

original.  

Example: a 5 Megabyte image is compressed into a 1 Megabyte image, the savings 

ratio is defined as (5-1)/5 or 4/5 or 80%.  

This ratio indicates that 80% of the uncompressed data has been eliminated in the 

compressed encoding. 
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Chapter Four 

Channel coding 

1- Error detection and correction codes: 

 The idea of error detection and/or correction is to add extra bits to the digital 

message that enable the receiver to detect or correct errors with limited 

capabilities. These extra bits are called parity bits. If we have k bits, r parity bits 

are added, then the transmitted digits are: 

𝑛 = 𝑟 + 𝑘 

Here n called code word denoted as (n, k). The efficiency or code rate is equal to 

𝑘/𝑛. 

Two basic approaches to error correction are available, which are: 

a- Automatic-repeat-request (ARQ): Discard those frames in which errors are 

detected. 

- For frames in which no error was detected, the receiver returns a positive 

acknowledgment to the sender. 

- For the frame in which errors have been detected, the receiver returns 

negative acknowledgement to the sender. 

b- Forward error correction (FEC): 

Ideally, FEC codes can be used to generate encoding symbols that are transmitted 

in packets in such a way that each received packet is fully useful to a receiver to 

reassemble the object regardless of previous packet reception patterns. The most 

applications of FEC are: 

Compact Disc (CD) applications, digital audio and video, Global System Mobile 

(GSM) and Mobile communications.   
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2- Basic definitions: 

- Systematic and nonsystematic codes: If (a’s) information bits are unchanged 

in their values and positions at the transmitted code word, then this code is 

said to be systematic (also called block code) where: 

Input data 𝐷 = [𝑎1, 𝑎2, 𝑎3, …………𝑎𝑘], The output systematic code  word (n, 

k) is: 

 𝐶 = [𝑎1, 𝑎2, 𝑎3, …………𝑎𝑘 , 𝑐1, 𝑐2, 𝑐3, …………𝑐𝑟]  

However if the data bits are spread or changed at the output code word then, 

the code is said to be nonsystematic. The output of nonsystematic code word of 

(n, k): 

𝐶 = [𝑐2, 𝑎1, 𝑐1, 𝑎3, 𝑎2, 𝑐3, …………… ] 

- Hamming Distance (HD): It is important parameter to measure the ability of 

error detection. It the number of bits that differ between any two codewords 

𝐶𝑖 and 𝐶𝑗 denoted by 𝑑𝑖𝑗. For a binary (n, k) code with 2𝑘 possible codewords, 

then minimum HD (dmin) is min⁡(𝑑𝑖𝑗), where: 

𝑛 ≥ 𝑑𝑖𝑗 ≥ 0 

For any code word, the possible error detection is: 

2𝑡 = 𝑑𝑚𝑖𝑛 − 1 

For example, if  𝑑𝑚𝑖𝑛 = 4, then it is possible to detect 3 errors or less. The 

possible error correcting is: 

𝑡 =
𝑑𝑚𝑖𝑛 − 1

2
 

So that for 𝑑𝑚𝑖𝑛 = 4, it is possible to correct only one bit. 

Example (2): Find the minimum HD between the following codwords. Also 

determine the possible error detection and the number of error correction bits.  
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𝐶1 = [100110011], 𝐶2 = [111101100]⁡𝑎𝑛𝑑⁡𝐶3 = [101100101] 

Solution: Here 𝑑12 = 6, 𝑑13 = 4⁡𝑎𝑛𝑑⁡𝑑23 = 3, hence 𝑑𝑚𝑖𝑛 = 3. 

The possible error detection 2𝑡 = 𝑑𝑚𝑖𝑛 − 1 = 2. 

The possible error correction ⁡⁡⁡𝑡 =
𝑑𝑚𝑖𝑛−1

2
= 1. 

- Hamming Weight: It is the number of 1’s in the non-zero codeword 𝐶𝑖 , 

denoted by 𝑤𝑖. For example the codewords of 𝐶1 = [1011100], 𝐶2 =

[1011001], 𝑤1 = 4, 𝑎𝑛𝑑⁡𝑤2 = 3 respectively. If we have two valid 

codewords- all ones and all zeros, in this case 𝐻𝐷 = 𝑤𝑖  

 

3- Parity check codes (Error detection): 

It is a linear block codes (systematic codes). In this code, an extra bit is added 

for each k information and hence the code rate (efficiency) is 𝑘 (𝑘 + 1)⁄ . At the 

receiver if the number of 1’s is odd then the error is detected. The minimum 

Hamming distance for this category is dmin =2, which means that the simple 

parity code is a single-bit error-detecting code; it cannot correct any error. There 

are two categories in this type: even parity (ensures that a code word has an even 

number of 1's) and odd parity (ensures that a code word has an odd number of 

1's) in the code word. 

Example: an even parity-check code of (5, 4) which mean that, k =4 and n =5.  

 

 

 

Data word Code word Data word Code word 

0010 00101 0110 01100 
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1010 10100 1000 10001 

 

The above table can be repeated with odd parity-check code of (5, 4) as follow: 

Data word Code word Data word Code word 

0010 00100 0110 01101 

1010 10101 1000 10000 

 

Note: 

Error detection was used in early ARQ (Automatic Repeat on Request) systems. 

If the receiver detects an error, it asks the transmitter (through another backward 

channel) to retransmit. 

The sender is calculate the parity bit to be added to the data word to form a code 

word. At the receiver, a syndrome is calculated. The syndrome is passed to the 

decision logic analyzer. If the syndrome is 0, there is no error in the received 

codeword; the data portion of the received codeword is accepted as the data 

word; if the syndrome is 1, the data portion of the received codeword is 

discarded. The data word is not created as shown in figure below. 
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4- Repetition codes: 

The repetition code is one of the most basic error-correcting codes. The idea of 

the repetition code is to just repeat the message several times. The encoder is a 

simple device that repeats, r times.  

For example, if we have a (3, 1) repetition code, then encoding the signal 

m=101001  yields a code c=111000111000000111. 

Suppose we received a (3, 1) repetition code and we are decoding the signal 

c=110001111. The decoded message is m=101. For (r, 1) repetition code an error 

correcting capacity of 𝑟/2 (i.e. it will correct up to 𝑟/2 errors in any code word). 

In other word the 𝑑𝑚𝑖𝑛 = 𝑟, or increasing the correction capability depending on 

r value. Although this code is very simple, it also inefficient and wasteful because 

using only (2, 1) repetition code, that would mean we have to double the size of 

the bandwidth which means doubling the cost.  

 

http://en.wikipedia.org/wiki/Error-correcting_code
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5- Linear Block Codes: 

 Linear block codes extend of parity check code by using a larger number of parity 

bits to either detect more than one error or correct for one or more errors. A block 

codes of an (n, k) binary block code can be selected a 2k codewords from 2n 

possibilities to form the code, such that each k bit information block is uniquely 

mapped to one of these 2k codewords. In linear codes the sum of any two 

codewords is a codeword. The code is said to be linear if, and only if the sum of  

𝑉𝑖(+)𝑉𝑗 is also a code vector, where 𝑉𝑖 ⁡&⁡𝑉𝑗 are codeword vectors and (+) 

represents modulo-2 addition. 

5-1 Hamming Codes 

Hamming codes are a family of linear error-correcting codes that generalize the 

Hamming (n,k) -code, and were invented by Richard Hamming in 1950. 

Hamming codes can detect up to two-bit errors or correct one-bit errors without 

detection of uncorrected errors. Hamming codes are perfect codes, that is, they 

achieve the highest possible rate for codes with their block length and minimum 

distance  of three. 

In the codeword, there are k data bits and 𝑟 = 𝑛 − 𝑘 redundant (check) bits, 

giving a total of n codeword bits. 𝑛 = 𝑘 + 𝑟 

Hamming Code Algorithm: 

General algorithm for hamming code is as follows: 

1. r parity bits are added to an k - bit data word, forming a  code word of n 

bits . 

2.  The bit positions are numbered in sequence from 1 to n.  
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3. Those positions are numbered with powers of two, reserved for the parity 

bits and the remaining bits are the data bits. 

4. Parity bits are calculated by XOR operation of some combination of data 

bits. Combination of data bits are shown below following the rule. 

5. It Characterized by (𝑛, 𝑘) = (2𝑚 − 1,  2𝑚 − 1 −𝑚),  𝑤ℎ𝑒𝑟𝑒 𝑚 =

2,  3,  4……. 

5-2 Exampl: Hamming(7,4) 

This table describes which parity bits cover which transmitted bits in the 

encoded word. For example, p2 provides an even parity for bits 2, 3, 6, and 7. 

It also details which transmitted by which parity bit by reading the column. For 

example, d1 is covered by p1 and p2 but not p3. This table will have a striking 

resemblance to the parity-check matrix (H). 

 

 

      Or it can be calculate the parity bits from the following equations: 

p1 = d1⁡d2⁡d4 

p2 = d1⁡d3⁡d4 

p3 = d2⁡d3⁡d4 

 

The parity bits generating circuit is as following: 
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At the receiver, the first step in error correction, is to calculate the syndrome bits 

which indicate there is an error or no. Also, the value of syndrome determine the 

position detecting using syndrome bits = CBA. The equations for generating 

syndrome that will be used in the detecting the position of the error are given by: 

 

A = p1⁡d1⁡d2⁡d4 

B = p2⁡d1⁡d3⁡d4 

C = p3⁡d2⁡d3⁡d4 

 

Example: 

Suppose we want to transmit the data 1011 over noisy communication channel. 

Determine the Hamming code word. 

Solution: 

The first step is to calculate the parity bit value as follow and put it in the 

corresponding position as follow: 

𝑝1 = d1⁡d2⁡d4 = 1⁡0⁡1 = 0 

p2 = d1⁡d3⁡d4 = 1⁡⁡1⁡1 = 1 

p3 = d2⁡d3⁡d4 = 0⁡1⁡1 = 0 

 

 

Bit position 1 2 3 4 5 6 7 
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Bit name 𝑝1  𝑝2 𝑑1 𝑝3 𝑑2 𝑑3 𝑑4 

Received value 0 1 1 0 0 1 1 

 

The the codeword is c=0110011 

Suppose the following noise is added to the code word, then the received code 

becomes as: 

The noise:     𝑛 = 0000100 

The received code word: 𝑐𝑟 = 00001000110011 = 0110111 

Now calculate the syndrome: 

A = p1⁡d1⁡d2⁡d4 = 0⁡1⁡1⁡1 = 1⁡ 

B = p2⁡d1⁡d3⁡d4 = 1⁡1⁡1⁡1 = 0 

C = p3⁡d2⁡d3⁡d4 = 0⁡1⁡1⁡1 = 1 

So that CBA = 101 which indicate that an error in the fifth bit. 

Hamming matrices: 

Hamming codes can be computed in linear algebra terms through matrices 

because Hamming codes are linear codes. For the purposes of Hamming codes, 

two Hamming matrices can be defined: the code generator matrix G and the 

parity-check matrix H 
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Example: 

Suppose we want to transmit the data 1011 over noisy communication channel 

 

This mean that 0110011 would be transmitted instead of transmitting 1011.If no 

error occurs during transmission, then the received codeword r   is identical to the 

transmitted codeword x:  𝑟 = 𝑥. The receiver multiplies H and r   to obtainthe 

syndrome vector z ,which indicates whether an error has occurred, and if so, for 

which codeword bit. 

 

suppose we have introduced a bit error on bit   5 

 

 


