INTRODUCTION TO DIGITAL SIGNAL PROCESSING

1:General DSP system

The processing of digital signals is called DSP; in block diagram form it is represented

by

Equivalet Analog Signal Processor
Anslog — utﬁrl—-lanc[d'g““'-d'g‘t”| AC) — [PoF ] - —-Analc-g
DmttSrﬂam

Prf: This is a prefilter or an antialiasing filter, which conditions the analog signal to

prevent aliasing.

ADC: This is called an analog-to-digital converter, which produces a stream of binary

numbers from analog signals.

Digital signal processor: This is the heart of DSP and can represent a general-purpose

computer or a special-purpose processor, or digital hardware, and so on.

DAC: This is the inverse operation to the ADC, called a digital-to-analog converter
which produces a stair case waveform from a sequence of binary numbers, a first step

towards producing an analog signal.
PoF: This is a postfilter to smooth out stair case waveform into the desired analog signal.

2-Drawback of analog signal processing (ASP)

A major drawback of ASP is its limited scope for performing complicated signal
processing applications. This translates into nonflexibility in processing and complexity

in system designs. All of these generally lead to expensive products.

3. Advantages of DSP




1. System using the DSP approach can be developed using software running on a
general-purpose computer. Therefore DSP is relatively convenient to develop and
test, and the software is portable.

2. DSP operations are solely on additions and multiplication, leading to extremely
stable processing capability-for example, stability independent of temperature.

3. DSP operations can easily be modified in real time, often by simple programming
change, or by reloading of registers.

4. DSP has lower cost due to VLSI technology, which reduces costs of memories,

gates, microprocessors, and so forth.

The principal disadvantage of DSP is the speed of operations, especially at very high
frequencies. Primarily due to the above advantages, DSP is now becoming a first choice in
many technologies and applications, such as consumer electronics, communications,

wireless telephones, and medical imaging.

4.Discrete-Time Signals

A discrete-time signal is a function of an integer-valued variable, n, that is denoted by
x(n).
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The sequence values x(n) to x(N — 1) may often be considered to be the elements of a

column vector as follows:

x = [x(0),x(1), ... ... ,x(N—=D]T (4.1)



Discrete-time signals are often derived by sampling a continuous-time signal, such as
speech, with an analog to digital (A/D) converter. For example, a continuous-time signal
x4 (t) thatis sampled at a rate of f, = 1/T,(t) samples per second produces the sampled

signal x(n) , which is related to x,(t) as follows:
x(n) = xa(nTs) (42)

Figure below show a segment of a continuous-time speech signal and the sequence of

samples that obtained from sampling it with T, = 125 ps.

4.1 Complex Sequences

A complex signal may be expressed either in term of its real and imaginary parts.
z(n) = a(n) + jb(n) = Re{z(n)} + jim{z(n)} =
|z(n)| explj arg{z(n)}] (4.3)

lz(n)|* = Re{z(m)}* + Im{z(nW)}*
(4.4)

—1 Im{z(n)}

arg{z(n)} = tan Re{z(n)}

(4.5)

Also



zx(n) = a(n) — jb(n) = Re{z(n)} — jim{z(n)} = |z(n)| exp[—j arg{z(n)}]

(4.6)
4.2 Some Fundamental Sequences
e Unit sample 6(n)
(1 n=20
5(n) = {O otherwise (4.7)
1 i
| Unit sample
0 n
e Unit step u(n)
(1 n=0
u(n) = {0 otherwise (4.8)
u(n) = Z 5(n —k) (4.9)
k=0
d(n) =un) —un-1) (4.10)
Unirt step
,,,,_,_,,lll‘]‘ll‘ll
0 n
e Exponential sequences
x(n) =a" (4.11)

Where a may be a real or complex number. For real aand 0 <a <1, x(n) is shown below



Real exponential
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If x(n) = e/®0, x(n) is complex exponential.

x(n) = e/™"?0 = cos(nw,) + j sin(nw,) (4.12)

4.3 Periodic and aperiodic Sequences

A signal x(n) is said to be periodic if, for some positive real integer N
x(n) =x(n+N) (4.13)

If x;(n) is a sequence that is periodic with a period N;, and x,(n) is another sequence
that is periodic with a period N,, the sum x(n) = x;(n) + x,(n) or the product x(n) =

x1(n) x,(n) will always be periodic and the fundamental period is

N;N,

= A NND (4.14)
Where gcd(N;, N,) means the greatest common divisor of N; and, N,
4.4 Symmetric Sequences
x(n) = x(—n) — even (4.15)
x(n) = —x(—n) - odd (4.16)
x(n) =x*(—m) - conjugate symmetric (4.17)
x(n) = —x * (—n) = conjugate antisymmetric (4.18)

Any signal x(n) may be decomposed into a sum of its even part, x.(n), and its odd

part, x,(n), as follows:
x(n) =x,(n) + x,(n) (4.19)

Where the even part of a signal x(n) is given by



xXe(n) = % [x(n) + x(—n)] (4.20)
Where the odd part of a signal x(n) is given by difference

Xo (n) =

N |-

[x(n) — x(—n)] (4.21)
The conjugate symmetric part of x(n) is

x,(n) = =[x(n) + x*(—n)] (4.22)

N|R

The conjugate antisymmetric part of x(n) is

xo(n) = 2 [x(n) — x*(=n)] (4.23)

N

4.5 Transformations of the Independent VVariable

y(m) = x(f(n)) (4.24)

Where f(n) is some function of n. The most common transformations are:

e Shifting: If y(n) = x(n —ny), x(n) is shifted to the right by n, samples if n,
is positive (this is referred to as delay), and it is shifted to the left by n, samples
if n, is negative (referred to as an advance).

e Reversal: This transformation is given by f(n) = —n and simple involves
"flipping" the signal x(n) with respect to the index n.

e Time Scaling:

»Down-Sampling: f(n) = Mn the sequence x(Mn) is formed by taking
every Mt"sample of x(n).
»Up-Sampling: f(n) = n/N the sequence y(n) = x(f(n)) is defined as

follows:

n =0,+N,+2N
y(n)z{x(ﬁ) n= )y L1V, T ) wen
0 otherwise



4.6 Addition, Multiplication, and Scaling

= Addition: y(n) =x,(n) + x,(n) —oco<n<oo
= Multiplication: y(n) = x;(n) x,(n) —o<n< o
= Scaling: y(n) = cx(n) —o<Nn<ow

4.7 Signal Decomposition

The unit sample may be used to decompose an arbitrary signal x(n) into a sum of

weighted and shifted unit samples as follows:

xn)=-+x(-1)n+1)+x(0)6(n) +x(1))éd(n—1) + x(2)d(n—2) + -

(o'e]
x(n) = z x(k)8(n — k) (4.25)
k=—o0
Example 4.1:
rim)
3
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(@) A discrete-time signal.
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(b) A delay by mg = 2. (c) Tame reversal.
xilmf2)
3
2
———a 1-1:1—.— -[:T--n
-2 -1 1 2 3 4 5 6 1 8 2 Uy 2 2 456 78 9 1011

(d) Down-sampling by 2 factor of 2 (e} Up-sampling by a factor of 2.



Example 4.2: Given the sequence

x(n)=26m+2)+6n+1)+26(n)+46(n—-1)+én-2),
make a sketch of:

a) y1(n) = x(n—2)
b) y2(n) = x(n +3)
) y3(n) =2x(n—1)
d) y4(n) = x(—n)

Solution:

x(n)=26m+2)+6n+1)+26(n)+46(n—-1)+(n—-2)

%x(n)
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a) yi(n)=x(n-2)
y1(n)

4 >
3 __________________________________________________________________ ]
2 ______________________________________________________________ ]
| ] ______ [ [ ____________ [ ]
°3 ! 0 1 2 3 A 5



b) y2(n) = x(n + 3)

y2(n)
4 >
3 _________________________________________________________________________
2 _____________________________________________________________________
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c) y3(n)=2x(n—-1)
y3(n)
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d) y4(n) = x(—n)
y4(n)
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Example 4.3: Given the sequence x(n) = (6 — n)[u(n) — u(n — 6)] , make

a sketch of:

a) y1(n) =x(4—n)
b) ¥2(n) = x(Zn — 3)
c) y3(n) = x(8 —3n)

Solution:

x(n) = (6 —n)[u(n) —u(n - 6)]

6
4
111 »
- r T - - - . »—p—
-2 —1 1 2 3 4 5 6 7 &8 9
a) y1(n) =x(4—n)
x(4 —n)
(4]
4
111
-2 =1 1 2 3 4 5 (4] i, H 9
(a)
b) y,(n) = x(2n —3)
x(n=3) (2n - 3)
f 6
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c) y3(n) = x(8 — 3n)

x(8 = n) I8 -=13m
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Example 4.4: A discrete-time signal x(n) =[1 1111 %] :

Sketch each of the following signals:

(2) x[n — 2]

(b) x[4 — n]

(c) x[2n]

(d) x[n — 1]3[n - 3].
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5. Discrete-Time System

In a discrete-time system an input signal x(n) is transformed into an output signal
y(n) through the transformation T[]

x(n) y(n) = Tx(n)]

EE— T[]

5.1 System Properties

» Memoryless System: a system is memoryless if, for any n, , we are able to

determine the value of y(n,) given only the value of x(n,).

Example 5.1:

1- y(n) = x?(n) is memoryless

2- y(n) = x(n) + x(n — 1) is not memoryless.



> Additivity: T[x;(n) + x,(n)] = T[x, (n)] + T[x,(n)]

X2 ﬁ?’l—\ 3 (#)+ x02(71) EMHH
= T
o J/

T [2:(re)]
x1(r1) T [x; ()] + T [x20rm)]

-2 »
e L 7 oo

2
X7 _is additive
x(n—1)

Example 5.2: The system defined by y(n) =

Solution: -
_ ) + x(m)?
T[x1(n) + x;(n)] = x (n—1)+ x,(n—1)
X () x,%(n)
T[xl(n)] + T[xZ(n)] - Xl(n _ 1) xz(n — 1)
The system y(n) = X’z:l(_"l)) is not additive because

T[x1(n) + x2(n)] # T[x1 ()] + T[xz(n)]

» Homogeneity: T[cx(n)] = cT[x(n)]

Loy

e (72 T [exCr)]
20(ra) - - T f———
T [xCr2)] T [x(z2)]
2o(Fe)) T -
. : x*(n)
Example 5.3: The system defined by y(n) = o

(cx(n))? cx?(n)

cx(n—1) - x(n—1)
x?(n) cx?(n)

x(n—1) - x(n—1)

Tlex(n)] =

cT[x(n)] =c



T[cx(n)] = cT[x(n)]
This system is, homogeneous
Example 5.4: the system defined by the equation
y(n) =x(n) +x*(n—1)
T[x1(n) + x;(M)] = [x;(n) + x,(W)] + [x;(n — 1) + x,(n - DJ’
=[x (n) +x"(n = D] + [x,(n) + x,"(n — 1)]

Tlxs(M)] + Tlxz(M)] = [x1(n) +x,"(n — D] + [x2(n) +x,"(n — 1)]
Is additive because
T[x1(n) + x;(n)] = T[x,(n)] + T[x2(n)]
for homogeneous Property he response to cx(n) is
Tlcx(n)] = cx(n) + c*x*(n — 1)
cT[x(n)] =cx(n) + cx*(n—1)
this is not homogeneous because the response to cx(n) is
T[cx(n)] # cT[x(n)]
» Linear System: A system that is both additive and homogeneous is said to be
linear. Thus,
Tla;x1(n) + azx;(M)] = a T[x ()] + a;T[x,(n)] (5.1)
» Shift-Invariance
Let y(n) = T[x(n)], then if y(n — n,) = T[x(n —n,)], the system is considered as
time invariant system. A system that is not shift-invariant is said to be shift-varying.
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Example 5.6: to test system defined by y(n) = x2(n) is shift-invariant.

y(m) = [x(M)]* > y(n—n,) = x*(n —n,)
y'(n) = [x'(M)]* = [x(n —n,)]* = x*(n — n,)
Because y(n — n,) = y'(n), the system is shift-invariant.



Example 5.7: the system described by the equation y(n) = x(n) + x(—n) is shift-

varying.
Solution: The shifted output y(n — n,) = x(n —n,) + x(—(n — n,))
x'(n) = x(n —n,),then
ym)=x'n)+x'(—n) =x(n—n,) + x(—n—n,) .
. Because y(n — n,) # y'(n), the system is shift-varying.
» Linear shift-Invariant System: A system that is both linear and shift-invariant

is referred to as a linear shift-invariant (LSI) system. The output y(n) is given

by

(00]

ym) = ) x(h(n - k) (5.2)

k=—o0
Which is known as the convolution sum y(n) = x(n) * h(n)
» Causality: A system to be causal if, for any n, , the response of the system at
time n, depends only on the input up to time n = n, . An LSI system will be
causal if and only if h(n) is equal to zero for n < 0.

Example 5.5: the system described by the equation y(n) = x(n) + x(n — 1) is causal

because the value of the output at any time n = n, depends only on the input x(n) at
n, and attimen, — 1.

Example 5.6:The system described by y(n) = x(n) + x(n + 1), is noncausal because

the output at time n = n, depends on the value of the input at timen, + 1.
> Stability: A system is said to be stable in the bounded input-bounded output
(BIBO) sense if, for any input that is bounded, |x(n)| < A < o, the output
will be bounded, |y(n)| < B <
For a LSI system, stability is guaranteed if the unit sample response is absolutely

summable:

(5.3)



Example 5.7: an LSI system with unit sample response h(n) = a™u(n) will be stable

whenever |a| < 1, because

(00] oo 1
> IRl = ) Jal = jal < 1
1= 1al
n=0

n=-—oo

Example 5.8: The system described by the equation y(n) = nx(n) , is not stable

because the response to a unit step, x(n) = u(n) , is y(n) = nu(n) , which is

unbounded.

The z-transform

The z-transform of a discrete-time signal x[n] is defined by

oo}

X(2) = z x(n)z™"

n=—o

Where z = re/ is a complex variable. The values of z for which the sum converges
define a region in the z-plane referred to as the region of convergence (ROC). If x(n)

has a z-transform X (z) , we write

x(n) & X(2)

Example 6.1: Find the z-transformer of the sequence x(n) = a™u(n).

Solution: Using the definition of the z-transform and geometric series given in table

,We have
X(2) = Z x(n)z™™ = Z a*u(n)z™™ = z atz " = Z(az‘l)”
n=-o n=-o n=0 n=0
1 z

1—azl! z—a




Considered the z-transform of a right-sided sequence, which led to a region of

convergence that is the exterior of a circle. ROC |z|>|a]

Im(z)

Re(z)

Sequence z-Transform Region of Convergence
a(n) 1 all z
1
o u(n) — jz| > ||
I —az"!
1
—oe"u(—n — 1) CE— lz] < o]
l — ="
. az”!
Ho"se(rn} 0 —a-')2 lz] = le|
(e — 1) oz 21 < lal
—na"u(—n — —_— ol = o
(1 —az—"')?
I — (cos eg)z ™!
s 1
cos(Regluin) T Yo e pr— z] =
_ (sin wp)z !
1
st Feep dee (1) I tcos i ¥ 23 lz) =

Example 6.2: find the z-transform of the sequence x(n) = —a™u(—n—1).

Solution: Proceeding as in the previous example, we have

(0.0]

X(z) = z x(n)z™ =

n=-—oo

o) ©o ® -1
a 7
=— E a iz = — é (a™'z)" =—a"'z E (@) = =
1—a 'z
n=0 n=0

n=0

(0.0]

n=—oo

Z

" 1—az1
ROC |z| < |a]

zZ—a

1

z —a"u(-n—-1)z " =-— Z a"z "

n=—oo



Im(z)

Re(z)

Note: Comparing the z-transforms of the signals in Example 6.1 and 6.2, we see that
they are the same, differing only in their regions of convergence. Thus, the z-
transform of a sequence is not uniquely defined until its regions of convergence has

been specified.

Example 6.3: Find the z-transform of x(n) = (%)n u(n) — 2)"u(—n—-1),and

find another signal that has the same z-transform but a different region of
convergence.
Solution: Here we have a sum of two sequences. Therefore, we may find the z-

transform of each sequence separately and add them together. From Example 6.1,

we know that the z-transform of x,(n) = (%)n u(n)is

(0] (0] [o0]

ho= 3 o= 3 B s -3 (0
3(6-)
4@ =7 14>

And from Example 6.2 that the z-transform of x,(n) = —2"u(—n — 1)

0 %} 1

X,(z) = z x(n)z ™" = z —2"u(-n—-1)z "= — Z 2z~

n=-—oo n=-—oo n=-—oo



(0]

:_ZZ n-1,n+1 _ Z(Z )t = 2~ zz(Z Z)"=—m

n=0

_ 1
T 1-—2z"1

X, (z) = 1_21
Therefore, the z-transform of x(n) = x;(n) + x,(n) is
X(2) = X1(2)+X,(2)

r lzl <12

1 1 2—52_1

— —_— 2
X(2) = 1-2z-1 Tt (1-3z~H(A-2z71)

With a region of convergence % < z < 2, which is the set of all points that are in the

ROC of both X, (z) and X,(z) .
To find another sequence that has the same z-transform, note that because X (z) is a

sum of two z-transforms,

1

1
X(z7) =
(2) %z—l + 5

1—
Each term corresponds to the z-transform of either a right-sided or a left —sided

sequence, depending upon the region of convergence. Therefore, choosing the right-

side sequences for both terms, it follows that

n

x(n) = % u(n) + 2™u(n)

Has the same z-transform asx(n) , except that the region of convergence is |z| >
2] .

6.1 Properties of z-transform




Property Sequence z-Transform Region of Convergence
Linearity ax(n)+hy(n) | aX(z)+hY(2) Contains R, N R,
Shift x(n = ny) ™™ X(z) R,
Time reversal v(=n) Xz 1/R,
Exponentiation o"x(n) X(a~'2) | R,
Convolution x(n) * y(n) X(2)Y(2) Contains R, N R,
Conjugation x*(n) X*(z*) R,
. dX(z)

Derivative nx(n) -2 - R,

1.Time Shifting

Z.T Z.T
If x(n) & X(2) thenx(n —n,) & Z " X(z)

Z.T
Proof: x(n —n,) & Z7 0 X(2)

co

Z{x(n—n,)} = Z x(n—ny)Z™™

n=—oo

Assumethatk =n—n, > n=k +n,

(00}

(0]

L2 —n)} = ) x()ZEm) = N (k) Z7k e

k=—o0
= 70 Z x(k) Z7*
k=—o0
=7 X(z)

2. Multiplication by an Exponential Sequence

y(n) = Zgx(n) then Y (2) = X(=)

k=—c0




Proof: y(n) = Zix(n) then ¥ (2) = X(;")

Y@ = )y

(0]

Y(2) = i Zyx(n)z ™" = 2 x(")<£>_nzx(£

n=—0oo

3.Differentiation of F(z)

dF(z)
dz

Z.T Z.T
f(n) & F(z) thennf(n) & —z

dF(z)
dz

Z.T Z.T
Proof: f(n) & F(z) then nf(n) & —z

F@ = ) fmz™

—z dFd(ZZ) =—z Z —nf(n)z"1=—z Z —nf(n)z "z 1
= Z nf(n)z™"

nfm) & -7

4. Conjugation of a complex sequence

Z.T Z.T
f(n) & F(z) then f*(n) & F*(z7)

Z.T Z.T
Proof: f(n) « F(z) then f*(n) < F*(z*)

F@) = ) fmz



5.Time Reversal

e @ e

Proof: f(-n) & F (3)

Z(f-my= ) f(-m2Z

Letk = —n

-k

- kif(k) 7+ = i o (3)

o)

ZT
x1(n) * x,(n) & X;(2)X,(z) ,ROC Ry1 N Ry,
Let

6.Convolution of Sequences

(00]

ym) = Y 1) xn - k)

n=—0oo

So that

Y@= ) yma

k=—o0



Y(2) = i {i x1 (k) xa(n = k)}z™"

n=—oo k=-—oo

If we interchange the order of summation

(0]

Y(Z) = 2 2, (k) i x,(n—k)z™

k=—0o0 n=-—oo

Let m=n—k

(0.0)

V@) = ) x0f i x,(m) 77"}

k=—o0 m=—oo

(0]

Y@= ) k07 Y wmmz™

k=—c0 m=—oo

Y(Z) = X1(2). X, (Z)

Example 6.4: Find the z-transform of x(n) = na"u(—n) .

Solution: To find X(z) , we will use the time-reversal and derivative

properties. First, as we saw in Example 6.1,

Z
(@"u(n) & —— ROC |z| > a
Therefore,
—1\n Z.T 1 1
(aH*un) < Ep—— ROC |z]| > -

And, using the time-reversal property,
1
-1

Z
(@™u(-n) & —

ROC |z| < a

Z

Finally, using the derivative property



p ) 1 x(n) = w(n) — (0.5)"u(n).
a “Z
—z7— =—— ROC |z| < a

dz 1-a~1z (1—a~12)?

Example 6.5: Find the z-transform of x(n) = u(n) — (0.5)"u(n) .

Solution:

Applying the linearity of the z-transform, we have

X(2) = Z(x(n)) = Z(u(n)) — Z(0.5"(n)).

-

:z—l

Z(u(n))

—_

z—0.5

and Z(0.5"u(n)) =

Substituting these results into X(z) leads to the final solution,

Example 6.5: Find the z-transform of the following sequence:

y(n) = (0.5)"au(n — 5),

where u(n — 5)=1forn > 5and u(n — 5) =0 forn < 5.

Solution:

We first use the shift theorem to have



Y(z) = Z[(O.S)H_Su(n . 5)} — 25 Z[(0.5)" u(n)).

1
|
Ln
[
[

2-05 z-05

6.2 Partial Fraction Expansion

For z-transforms that are rational functions of z, a simple and straightforward
approach to find the inverse z-transform is to perform a partial fraction expansion of
X(2) .

Example 6.6: Find the inverse z-transform of the following X(z) .

4_ZZ_1+1Z_2 4,_ZZ_1+1Z—2
_ 4 4 _ 4 4
X(@)=— 1 - 1 1
1—ZZ_I+§Z_2 (1—72_1)(1—12_1)

With a region of convergence |z| > % :

Solution: the partial fraction expansion has the form

Ay A,
Xz)=C+ 1 + 1
(1—72_1) (1—12_1)

The constant C is found by long division:

— 3 _—
Tl A

Bl= =
[ [

Therefore, C = 2 and we may write X(z) as follows:
1 4
2 — ZZ

(1- %Z_l)(l - %Z_l)

X(z)=2+




Next, for the coefficients A, and A, we have

Thus, the complete partial fraction expansion becomes

X(z)=2+

1
(1- %Z_l) (1- %z‘l)
Finally, because the region of convergence is the exterior of the circle |z| > % , x(n)

Is the right-sided sequence

n

x(n) =28(n)+3 (%) u(n) — G)n u(n)

Example 6.6: Find the inverse z-transform of the following X(z) .

X(a) = 142428 (147
Tolde et (1= (-2
Solution:
A A
X(3)= Byt ——



2
-3+ 427 41
772 =377V 42
5z =1

b=

—1 45z
(- f=na-=1

B ~1 4577 1
a (“t —%r')u—z-';f) (-3 )]
~1+5z7"

A = 2+ {I—EHI] = 8.
_( {E-%z‘j]ﬂ“z"l) L=1

Therefore,

X(z) =2+

=173

X(z)=2- +

x[n] = 28[n] -9 (%)" y[n] + 8uln].



7. The Discrete Fourier Transform (DFT)

The DFT is an important decomposition for sequences that are finite in length. The

DFT is a mapping form a sequence, x(n) , to another sequence, X (k) ,

DFT
x(n) = X(k)
The sequence X (k) is called the N-point DFT of x(n) .
N-1
X(k)= ) x(n)e J2mnk/N 0<k<N
; (7.1)

and x(n) may be expanded as follows
1 N-1
x(n) = NZ X (k)eJ2mmk/N 0<n<N (7.2)
k=0

A notational simplification that is often used for the DFT is to define
WN — e—jZTL'/N

For the complex exponential and write the DFT pair as follows:

N-1
X(k) = ) x(m)W,™ 0<k<N (7.3)
1 Nz—l ) (7.4)
x(n) == ) X(k)Wy™ 0<n<N
N k=0 !

Example 7.1: Find the DFT for the sequence x =[1 3 5 2].

Solution: giventhat N = 4.

N-1
X(k) = z X)Wy ™ 0<k<N
n=0
3
X(k) = Z ()W, 0<k<4

n=0

whenk =0



3
X(0) = Z x(W,™0 = 1w, % + 3., "0 + 5.2 4+ 2., %°
n=0
=1.wW, +3. W, +5w,° +2.w,°

_ L0x27T _ .0x27T _ .0x271 _ L0x271T
=1le /™4 +3e777 45777 427772

= 1[cos 0 —jsin 0] + 3[cos 0 —jsin 0] + 5[cos 0 —jsin 0] + 2[cos 0 —jsin 0]
=1[1—0]+3[1—0]+5[1—0]+2[1—0] =11
X(0) = 11

whenk =1
3
X(1) = Z x()W,t = 1w, + 3w, + 5w, 2t 4 2., 3
n=0
= 1w, +3.w, ' +5. W, +2.W,°

. _ 12w _ 22T _.3¥2m
=1e /94 3e7/72 45772 427772

, _om _am _6m
=1e/9+3e7/ 2 + 5777 + 2772
, T , _.3m
=1e 9+ 3e 72 +5e " +2e772
3 3

. 0 7T - - 7T - - - .
= 1[cos 0 —jsin 0] + 3 [cosz—]sm E] + 5[cos T —jsin ] + 2 cos —-—jsin—

=1[1-0]+3[0—=j]+5[(-1)=0]+2[0—(=))]=1—-3j—5+2j=—4—]j
whenk = 2
3
X(2) = Z XW,P? = 1.W,%2 + 3. W, 12 + 5.W,2°2 + 2. W,
n=0
=1.W,°+3. W2 +5 W, * +2.W,° =1+3

. _i2%2T _A4x2m _.6%21
=1e /0 +3e7/72 +5e/4 +2e77 4

o _am o _sn
=1e 79+ 3e/7 + 5777 + 27772
= 1e /0 4+ 3¢ /T 4 5 7J2T 4 DpJ3T

[cos 0 —jsin 0] + 3[cos —jsin ] + 5[cos 2w —jsin 27| + 2[cos 37w —jsin 37|

1
1[1—-0]+3[(-1)— 0] +5[1—-0]+2[(-1)+0]=1-3+5-2=1



X(2)=1
whenk =3

3
X33) = Z x(W,V3 = 1w, + 3. W, + 5.2 4+ 2., %3

n=0

=1.wW,° +3.W,> +5wW,°+2.w,°

. _.3%2m _ 621 _.9%2m
=1e/%+3e /72 45774 +2e7771
121 181

= 1le f°+3614 +5e 77 +2e7 7

. _3m , o
=1e /9 +3e/2 + 57737 4 2772

3
= 1[cos 0 —jsin 0] + 3 [cos — —jsin > + 5[cos 3w —jsin 37]

o
+ 2 [cos——]sm—
2
=1[1-0]+3[0—-(—1))] +5[(—1) —0]+2[0—-1j]=1+3j—5—-2j
=—4+4j
7.1 DFT Properties
» Linearity

If x;(n) and x,(n) have N-point DFTs X, (k) and X, (k) , respectively,

DFT
ax;(n) + bx,(n) = aX,(k) + bX, (k) (7.5)
Note: if x;(n) and x,(n) have different lengths, the shorter sequence must be added

with zeros in order to make it the same length as the longer sequence.

» Symmetry
If x(n) is real-valued, X (k) is conjugate symmetric,
X(k) =X"(=k) = X"((N = k))n (7.6)
And if x(n) is imaginary, X (k) is conjugate antisymmetrice,
X(k) = =X"(=k) = =X"((N = K))n (7.7)

Where ((i))y or (i mod N) are taken to mean "i modulo N" . For example,

((13))g =5and ((=6))s =2 .
» Circular Shift



x((n— np)) Ry(m) = T(n — ny)Ry ()

Where n, is the amount of the shift and R, (n) is a rectangular window:
1 0<n<N
Ry(n) = {

0 else
Where %(n) is the periodic sequence which may be formed from x(n) as follows:

(00]

X(n) = z x(n+ kN)

k=—o0
A circular shift to the right by n, corresponds to a rotation of the circle n, positions

in a clockwise direction.

n =

n=20 l
z(0) z(6)
=(7) (1) z(5) z(7)
=(6) x(2) z(4) z(0)
x(5) x(3) z(3) x(1)
x(4) =(2)
Eight-point sequence. Circular Shift by two
x(n) 5 z((n — 1))aRa(n)
2 » [ ] 2
T : 1o
>—8 *—— &—i 5 »>r—r—r
-2 -1 1 2 3 4 5 -2 -1 1 2 3 4 5
(a) A discrete-time signal of length N=4. (b) Circular shift by one.
z((n = 2))4R4(n) 2((n — 3))aRa(n)
3
2
-—8 —Q——Q—-—O-—:

—2—1l12345

(c) Circular shift by two. (d) Circular shift by three.



If a sequence is circularly shifted, the DFT is multiplied by a complex exponential,
DFT n-k

x((n — no))NRN(n) = Wy""X(k) (7.8)
Similarly, with a circular shift of the DFT, X(k — k,) , the sequence is multiplied
by a complex exponential,

nk DFT
WN OX(n) — X((k + kO))N (79)

8. Radix-2Fast Fourier Transform (FFT)

Because x(n) may be either real or complex, evaluating X(k) (see Eqn.(7.3))

requires on the order of N complex multiplications and N complex additions for each
value of k.therefore , because there are N value of N, computing an N -point DFT
requires N2 complex multiplications and additions. Suppose that the length of x(n)
iseven (i.e., N is divisible by 2). If x(n) is decimated into two sequences of length of
N/2, computing the N/2 -point DFT of each of these sequences requires

approximately (N /2)? multiplications and the same number of additions. Thus, the
two DFTs require 2(N/2)? = %NZ multiplies and adds. Therefore, if it is possible to
find the N-point DFT of x(n) from these two N /2-point DFTs in fewer than %NZ

operations, a savings has been realized.
8.1 Decimation-in-Time FFT

Let x(n) be a sequence of length N = 2Y, and suppose that x(n) is split (decimated)
into two subsequences, each of length N/2. As illustrated in Fig.(8.1), the first

sequence, g(n) is formed from the even-index terms,

gn) =x(2n) n=01,.--1
and the second. h(n), is formed from the odd-index terms,
h(n) = x(2n+ 1) n=01.%5-1

In terms of these sequence, the N-point DFT of x(n) is

N-1

X(k) = Zx(n)W,\’,”‘ - z X(MWIk + Z X (R)Wk

n=0 neven nodd



N N
-1 >—1

2
= g(Owzk + 2 ROWEHY* Kk =01,..,N -1
=0 =0

(8.1)

z{n)

x(2) x{4) z{7)

SR el e 0 I A O
1

—2 1 2 3 4 5 I 7T

B
x(1} x{6)

Even-Index 1;57 &d'lndcx Terms
#(n)

h{n)
x=(2) x(4)

x(7)

x{3) x({5)

x(0) T T

—2 1 I 1 2 l 4 5 1 2 3 4 5
x(6) (1)

kel
-

Fig.(8.1)
Because Wy'* = W%, , Eqn.(8.1) may be written as

N

271 %—1

XUy =Y gOW, + Y hOWELWE k=01,..,N -1
=0 =0
N

2 2
X(k) = Z gOWE, + Wi z ROWE, k=01,..,N—1
=0 [=0

Note that the first term is the N/2 —point DFT of g(n) , and the second is the N /2 —
point DFT of h(n) :

X(k) =G(k) + WEH(k) (8.2)

Although the N /2 -point DFTs of g(n) and h(n) are sequences of length N /2 , the
periodicity of the complex exponentials allows us to write

G(k) = G(k +3) H(k) = H(k +2)



Therefore,X (k) may be computed from the N /2 —point DFTs G (k) and H(k) . Note
that because

Wt = wrkw? = —wk
Then

N
WtV (k + 7) = —W}FH (k)

And it is only necessary to form the products W¥H (k) fork =0,1,...,N/2—1.A
block diagram showing the computations that are necessary for the first stage of an
eight-point decimation-in-time FFT is shown in Fig.( 8.2).

G(0)

z(0) O——s—o X(0)
we

N GZ”\ / X(1)
= 4-Foint 1
DFT G(2) . We

z(4) O———r o' X(2)

Z

Gm><></ws X(3)

Cx 3

W,

3
B

-

)

z(6) O———

4

X(5)

Wa
3 O_"_" L
z(3) 4-Point PY y /\\"j‘f
z()0——od PFT o X(6)
Hy N
z(7) O—— C¥ X(7)

H(3)

D

=

Fig.(8.2)
If N/2 is even, g(n) and h(n) may again be decimated. For example, G (k) may be

evaluated as follows:

N_, N_, N_,

G(k) = 2Zg(n)W&”‘ = Zz gmwWys, + ZZ gmWy,
n=0 2

neven nodd

As before, this leads to

N_, N_,

4 4
GkY = ) gmW;k, + Wil > g(2n+ DW,
n=0 n=0



Where the first term is the N/4 —point DFT of the even samples of g(n) and the
second is the N /4 —point DFT of the odd samples. A block diagram illustrating this
decomposition is shown in Fig.(8.3). If the N is a power of 2, the decimation may be

continued until there are only two-point DFTs of the form shown in Fig. (8.4 );
2-Point o
W
DFT \/
x(4) O—— G(1)
. W
=(2) O——-| ‘. G(2)
2-Point w3
DFT /\
z(6) O——— o G(3)
Wi
Fig.(8.3)
The basic computational unit of FFT, shown in Fig.(8.4a), is called a butterfly. This

structure may be simplified by factoring out a term Wy from the lower branch as

illustrated in Fig.(8.4b). The factor that remains is WNN/2 = —1..A complete eight-

point radix-2 decimation-in-time FFT is shown in Fig.(8.5).

Fan't )

Wk ><
-
—1

oy
N/ W =
Wy N

() (b)
Fig.(8.4)




z(0) O O O QO— - X(0)
i _><__ N~
z(4) O- - O Q- O~ X(1)
we > >
2(2) O —o X(2)
O—“’3—<,i>< we /\
2(6) O o o o 0 X(3)
-1 -1
2(1) O s’ r'a" e ) X(d)
WD v
2(5) O———O - o a o X(5)
T w > XX
z(3) O o o —o X(6)
wa wi

Fig.(8.5): Cooley-Tukey FFT decimation in time.
Example 8.1: Find the DFT of the following sequence x using the FFT algorithm.

x=[1,-1,-1,-11,1,1,—1]

Solution: the scale factors W (k = 0,1, ..., N/2 — 1) are easily calculated as

follows:

. 1 1 . .
WSO =1, W81 — e—]Zn/B — _—j_ JWSZ — e—]41‘r/8 — _j:W83 — e—]6n/8

\/7 '\/E
—_i_ i

x(4)=1

x(2)=1 O O —C 0
! é [-2] - >g—12
x(6)=1 -

=1 O

x0)=1 O O O- Q 0 Q / [0]
' :\ [~1.414+] 3.414]

o [2-72]

x(5=1 O [1.414+/0.58]

[2+/2]

' >
x(3)=—1 O O I F = O ~ O - C
1 __><__ [0] ~ N2 / \
x(7)=1 . —C - [-1.414-;3.414]

- K L EE

Example 8.2: Consider the sequence




x(n)=6(n)+26(n—2)+6(n—3)
(@  Find the four-point (N = 4) DFT of x(n) .
(b)  Confirm your result in (a) using the FFT algorithm
Solution:
@ xn)=n)+26n—2)+6(n—-3)
x(n) =[1021]

N-1 3
X(k) — Z x(n)e—jZnnk/N — 2 x(n)e—jZnnk/N
n=0 n=0

X0)=14+0+2+1=4
3
X() = Z x(mw,”t = 1w, + oW, + 2., 2 + LW,

n=0
= 1w +ow, +2.wW,2+1.w,>
. _ 12w _:2%2W _.3%2m
X(D=1e7°+0e 2 +2e7772 +1e/72
, 2 AT _ 6T
=1e %+ 0e7/ % + 274 + 1772

. _ . _:3r
=1e 79+ 0e /2 +2e7 /" + 1e /2
. no..m . 3m . 3m
= 1[cos 0 —jsin 0] + 0 [cosz—]sm E] + 2[cosm —jsinm] + 1 cos —-—jsin—

=1[1-0]4+0[0—j]+2[(-1)—-0]+1[0-(—)]=1-24+j=—-1+4]

3
X(22) = Z x(MW,V% = 1.W,%*2 + 0. W, 2% + 2. W,%"% 4+ 1. W, 32
n=0
=1.W+0W2+2.W *+1.W,° =1+3

. _ 22T _ 42w _.6%2m
=1e /%4 0e7/7 % 427777 +1e7/72

o _am o _sn
=1e 794+ 0e™’/ 7 + 2777 + 17772

= 1e /O 4+ Qe /T 4+ 2e7J2T 4 1e7I3T

= 1[cos 0 —jsin 0] + O[cos T —jsin ] + 2[cos 2w —jsin 21r] + 1[cos 3w —jsin 37|



=1[1-0]+0[(-1) = 0] +2[1=0] +1[(-1) +0]=14+0+2—-1=2

3
X33) = Z x(MW,3 = 1w, + 0w, + 2.w,22 + 1w, %3

n=0

=1w+ow>+2. W, +1.w,° =

. _.3¥21 _ 621 _.9%2m
=1e /040774 +2e77F +1e7/71
121 181

= 1le f°+Oe]4 +2e 77 +1e7 T

. _3m , o
=1e 94+ 0e™/2 + 273" + 1772

3
= 1[cos 0 —jsin 0] + 0 [cos — —jsin > + 2[cos 3w —jsin 37]

O
+1 [cos——]sm7

=1[1-0]4+0[0— (-1))] +2[(-1) = 0] +1[0—1j]=1+0—-2—j=—1—

Xk)=[4 —-14j1 2 —1-/j1]

(b) WP =1W)=—j



W01 _ 3
X222 o . Xl
-1
(D=0 o ~ . 11
31 o w><f i
-1
8.2 Complexity of FFT

Computing an N-point DFT using a radix-2 decimation-in-time FFT is much more
efficient than calculation the DFT directly. For example, if N = 2V, there are

log, N = v stages of computation. Because each stage requires N/2 complex
multiplies by the factors Wy and N complex additions, there are a total of%N log, N

complex multiplications and N log, N complex additions.

8.3 Inverse Fast Fourier-Transform(l1FFT)

It is possible to calculate the IFFT using FFT algorithm:

*

N-1
ZJX*(k)WIG"]
k=0

1 N-1 I .N—1 | 1
X(n) == kzo XUOW™ = = ; X UOW™ = =)

1
= JIFFT(j X" ()]

The algorithm can be summarized by the following steps:

1. FFT of sequence j X*(k) , i.e. swap real and imaginary parts.
2. Swap real and imaginary parts of result.
3. Normalize 1/N.



Example 8.3: Find the IFFT the sequence resulted from example 8.2.
X(k)=1[4-1+j2,-1—]]

Solution:
6}

\ =N
X0)=4%4 o 4jsﬂ>4—>x(0)=1

) =2 L ; +N
1) =2 o 0505 x(1) =0

1y — 1 _ =N
XD=1-jp 8jsﬂ>8—>x(2):2

X3)=-1-j - swap <N

" 4j—4-2x(3)=1



9.Convolution

The relationship between the input to a linear shift-invariant system, x(n) , and the

output, y(n) , is given by the convolution sum

0]

y(m) = x(n) «h(n) = ) x(h(n— k) (9.1)

k=—o0

9.1 Convolution Properties

» Commutative Property
x(n) * h(n) = h(n) * x(n)

» Associative Property

{x(n) * hy(n)} * hy(n) = x(n) * {hy(n) * hy(n)}
» Distributive Property

x(n) * thy(n) + h,(n)} = x(n) * hy(n) + x(n) * hy(n)



x(n) yin) h(n) y(n)
——  hin) }—— — ] ) ——
(@) The commutative property.
x(n) y(n) x(n) y(n}
——  hiln) > hy(n) e ——t hy(n) ¥ h2(n) p——
(k) The associative property.
—— hjin) >
x(n) + ¥(r) x(n) y(n)
—— H—— ] h1(1t) + h2(n) >
+
* hain) "
{c) The distributive property.
9.2Performing Convolution
1. Direct Evaluation
N—1 N o0
| —a
a’ = a" = —— lal < 1
; 1 —a ; 1 —
N=I N4l N 00
N -1 - N
Zna":i i 5 a ta Zna”: a lal < |
= (I-a) e (1-ap
N-I N-|
n=3iN(N-1 n*=INN - D@2N - 1)
n=(0 =0

Example 9.1 :- Let us perform the convolution of the two signals

"n=0
x(n) = a™u(n) = {Oa T;L <0

and

h(n) = u(n)

(00]

y(n) = x(n) * h(n) = z x(k)h(n — k) = Z a"u(k)u(n — k)

k=—o0

k=—c0




Because u(k)is equal to zero for k < 0 and u(n — k)is equal to zero for k > n,
when n < 0, there are no nonzero terms in the sum and y(n) = 0. On the other

hand, ifn > 0,

n

y(n):zakzl——a”“

l1-a
k=0
_ . n+1
Therefore form table above , y(n) = ¥*_, ak =2 ia u(n)

2. Graphical Approach

Convolutions may also be performed graphically. The steps involved in using the

graphical approach are as follows:

1. Plot both sequences, x(k) and h(k) ,as functions of k.
2. Choose one of the sequences, say h(k) , and time-reverse it to form the
sequence h(—k).

3. Shift the time-reversed sequences by n.

4. Multiply the two sequences x(k) and h(n — k) and sum the product for all values

of k. The resulting value will be equal to y(n) . This process is repeated for all

possible shifts, n .

If x(n) is of length L; and h(n) is of length L, , y(n) = x(n) * h(n) will be of

length

L=L +L,—1
Furthermore, if
{x(n);ny, <n <nyt and {h(n); ny, <n <ny.} ,then

{y(n); Nyp SN S nye} where n,, = nyp + npp ANd Ny = Ny + Npe



Example 9.2 : To illustrate the graphical approach to convolution, let us evaluate

y(n) = x(n) * h(n) Where x(n) and h(n) are the sequences shown in Fig.9-1 (a)

and (b) , respectively. To perform this convolution, we follow the steps listed above:

1.

Because x(k) and h(k) are both plotted as a function of k in Fig.9-1 (a) and (b),
we next choose one of the sequences to reverse in time. In this example, we time —
reverse h(k), which is shown in Fig.9-1 (c).

Forming the product, x(k)h(—k) , and summing over k , we find that y(0) = 1.
Shift h(k) to the right by one results in the sequence h(1 — k) shown in Fig.9-
1(d). Forming the product, x(k)h(1 — k) , and summing over k , we find that
y(1) =3.

Shift h(1 — k) to the right again gives the sequence h(2 — k) shown in Fig.9-
1(e). Forming the product, x(k)h(2 — k) , and summing over k , we find that
y(2) = 6.

Continuing in this manner, we find that y(3) = 5, y(4) = 3, and y(n) = 0 for
n> 4.

We next take h(—k) and shift it to the left by one as shown in Fig. 9-1(f). Because
the product, x(k)h(—1 — k), is equal to zero for all k, we find that y(—1) = 0.

In fact y(n) = 0 for all n < 0. figure 9-1(g) shows the convolution for all n.



ik} hik)
L

~1 - I 201 4 % 6 18 PR ER

Fig.(9.1). The graphical approach to convolution.



3. Linear Convolution Using The DFT

The DFT provides a convenient way to perform convolutions with having to
evaluate the convolution sum. Specifically, if h(n) is N; points long and x(n) is N,

points long. h(n) may be linearly convolved with x(n) as follows:

1. Pad the sequences h(n) and x(n) with zeros so that they are of length
N>N; +N, —1.

2. Find the N-point DFTs(use FFT to reduce complexity) of h(n) and x(n).
3. Multiply the DFTs to form the product Y (k) = H(k)X (k).

4, Find the inverse DFT of Y (k).

Example 9.3 : let us consider the sequences x(n) = [1,2,3,1] ; h(n) =

[4,3,2,1] (note: the dash over the number refers to the index n = 0).
Solution: N; = N, = 4 ,hance. N > 4 + 4 — 1 = 7. To utilize the benefit of FFT,
let N = 8, and x,, = [1,2,3,1,0,0,0,0] and h,, = [4,3,2,1,0,0,0,0] .
Then
X(k) =[7,1.7071 — 5.1213j, -2 — 1j,0.2929 + 0.8787},1,0.2929
—0.8787j,—2 + 1j,1.7071 + 5.1213j]

and

H(k) = [10,5.4142 — 4.8284j, 2 — 2j, 2.5858 — 0.8284j, 2,2.5858 + 0.8284j, 2

+2j,5.4142 + 4.8284j]
Y(k) = Hk)X (k)

= [70,—15.4853 — 35.9706j, —6 + 2j,1.4853 + 2.0294,2,1.4853

—2.0294j,—6 — 2j,—15.4853 + 35.9706/]
Applying inverse DFT to Y (k) gives

N-1
x(n) = z X)W, ™ 0<n<N
k=0

2|~

yn = [4,11,20,18,11,5,1,0]



Or

y(n) =46(n) +116(n—1) +206(n—2) + 186(n—3) + 116(n — 4)
+56(n—5)+6(n—6)



CHAPTER TWO:DIGITAL FILTER DESIGN
1.Structures for IR Systems
1.1 Direct Form |

The input x(n) and output y(n) of a causal (Infinite Impulse Response) IR filter

with a rational system function
Y(z)  SM bz

H = = 1.1
DX T TR &
Is described by the linear constant coefficient difference equation
N M
y(n) + z a,y(n—k) = Z by, x(n — k) (1.2)
k=1 k=0
or,
M N
y) = Y bex(n—k) = Y ay(n—k) (13)
k=0 k=1
The block diagram of Fig.(1.1) is an explicit pictorial representation of Eq.(1.3).
More precisely, it represent the pair of difference equations
M
v(n) = Z b, x(n — k) (1.4a)
k=0
N
y() = v@) = ) @ y(n - k) (1.4b)
k=1

Form Egn.(1,1), Fig.(1.1) can be viewed as an implementation of H(z) through the

decomposition

H(z)=Hz(z)Hl(z)=(HZ = )(Ebkz ) (1.5)
k=1

Or, equivalently, through the pair of equations

V(z) = H,(2)X(z) = (Z by z—k> X(2) (1.6a)
k=0



T+ Z_k> V(z) (1.6b)

Figure (1.1) can be viewed as a cascade of two systems, the first representing the

Y(2) = H,(2)V(2) = <

computation of v(n) from x(n) and the second representing the computation of y(n)

fromv(n) .

1.2 Direct Form |1

Since each of the two systems is a linear time-invariant system, the order in which

the two systems are cascaded can be reversed, as shown in Fig.(1.2), without
affecting the overall system function. For convenience, we have assumed that M =
N.

Z 1
H(z) = H1(2)H,(2) = (z by Z_k> <1 +YV_q —k> (1.7)
prmr k=14 Z

Or, equivalently, through the pair of equations

1
W(z) = H,(2)X(2) = (1 S o Z_k>X(z) (1.8a)
k=1

Y(z) = Hy(2)W(2) = (Z by z-k> W(z) (1.8b)
k=0



In the time domain, Fig.(1.1) and (1.2), equivalently, Eqn. (1.8) can be by the pair of

difference equations

N

w(n) = x(n) — arw(n—k) (1.9a)
kZl .
M
y(n) = z byw(n —k) (1.9b)
k=0

The systems in Fig.(1.1) and (1.2) each have a total of N + M delay elements.
However, the block diagram of Fig.(1.2) can be redrawn by noting that exactly the
same single, w(n) , is stored in the two chains of delay elements in the figure.
Consequently, the two can be collapsed into one chain, as indicated in Fig.(1.3).

The total number of delay elements in Fig.(1.3) is less than in either Fig.(1.1) or
Fig.(1.2). Specifically, the minimum number of delays required is, in general,

max (N, M).

™, v MmN
RS A v oy
Z-l Z—l
—ay by
6‘?4—4—' w(n —1) v—b—bé}
Z—l 7 1
| w(n —2) |
N1 | _ | by_1
61?4_4_'1&’ (n—N + 1)'_’_’€9
71 71

—_rﬁi_‘ H}(in — N) \_—b;‘.f_

Fig.(1.2)



—y | b‘n"r
< »>
Fig.(1.3)

Example 1.1: Draw the block diagram and the signal flow graph using direct form |

and Il realization of the discrete-time system represented by the transfer function

Hip = 1+ 2z71
() =T 15,71 09:,2

Solution: Comparing this system function with Eqgn.(1.1), we find b, = 1, b; = 2,
a, = —1.5,and a, = 0.9. Figure (1.4a) and (1.4b) depict a pictorial diagram for the
direct form | and I, respectively. Figure (1.4a) and (1.4b) can be rewritten applying
the signal flow graph, as shown in Fig.(1.5a) and (1.5b)

O—p O —p QG Q » O O—p O —»
x(n - x(n
Ol ol @
r A -
Y z Zl A /
1.5 2 2
(J < L > >
A T L e y 2z}
-0.9 -0.9
< (a) (®) <

Fig.(L1.4)



yv(n) x(n) y(n)

¥ o

(b)

Fig.(1.5)

1.3 Cascade Structure

The cascade structure is derived by factoring the numerator and denominator

polynomials of H(z)

max (N,M) X

H(z) = ZIX:oka_k — 4 1_[ 1—PBxz"

1+21,\f:1akz_k o1 1_aka_k

(1.10)

This factorization corresponds to a cascade of first-order filters, each having one pole
and one zero. In general the coefficients a;, and g, will be complex. However, if
h(n) is real, the roots of H(z) will occur in complex conjugate pairs, and these
complex conjugate factors may be combined to form second-order factors with real
coefficients:

1+ Bz ' + Box z27°
1+a z7t +ay z72

Hy(z) =

There is considerable flexibility in how a system may be implemented in cascade
form. For example, there are different pairings of the poles and zeros and different
ways in which the sections may be ordered. For example the system

142z71 4272
—0.75z2714+0.125 z72

Has a direct form | and direct form |1 structures shown in Fig.(1.6)

H(z) = 1



Fig.(1.6)

Alternatively, to illustrate the cascade structure, we can use first-order systems by

expressing H(z) as a product of first-order factors, as in

1+2z7 14 272
H(z) = - -
1—0.75z71+4+0.1252z72
14z H(1+2z71
H(z) = ( )( )

(1-05z"1)(1+0.25z71)

Since all of the poles and zeros are real, a cascade structure with first-order sections
has real coefficients. If the poles and/or zeros were complex, only a second-order
section would have real coefficients. Fig.(1.7) show two equivalent cascade

structures.

r [n] i——1 I—J J)—’ u yinz
Zfl z—l z—i Z_l
0.5 0.25

(a)

Y
Y
¥

0.25
(b)

Fig. (1.7): (a) Direct form I subsections. (b) Direct form Il subsections.

1.4 Parallel Structure

An alternative to factoring H(z) is to expand the system function using a partial

fraction expansion. For example, with



11?:1(1 —PBrz™h)

H(z)=A N 1 az D)

If N > M and a; # «ay (the roots of the denominator polynomial are distinct), H(z)

may be expanded as a sum of N first-order factors as follows:

N
Ay

H(Z):Z1—a z71
k=1 k

Where the coefficient A, and « are, in general, complex. This expansion
corresponds to a sum of N first-order system functions and may be realized by
connecting these system in parallel. If h(n) is real, the poles H(z) of will occur in
complex conjugate pairs, and these complex roots in the partial fraction expansion

may be combined to form second-order systems with real coefficients:

Ny .
Yok+V1ik Z

] 1+ay,z7t+ay,z72

H(z) =

Shown in Fig.(1.8) is a sixth-order filter implemented as a parallel connection of three
second-order direct form Il systems. If N < M, the partial fraction expansion will

also contain a term of the form
cot+ 1zt + ez MV

Which is an FIR filter that is placed in parallel with the other terms in the expansion
of H(z) .



w2

x(n) oz yin)

oy

Fig.(1.8)

The parallel-form realization for the system with a second-order section is shown in
Fig.(1.9a).

14+2z71 4272 _ g4 —7+4+8z71
1—-0.75z"1 4012522 1—0.75z"1 +0.125 22

H(z) =

Since all the poles are real, we can obtain an alternative parallel form realization by
expanding H(z) as

25

H(z) =8 -
(2) =8+ 05,7 T-02571




The resulting parallel form with first-order sections is shown in Fig.(1.9b).

s

L s m—] i T ,
) yoy | 1 v
a

— 0.5

=25
075 8 et S
l 4
7! ‘
0125 s

(a) (b)

Fig.(1.9)

2.Structures for FIR Systems

A causal FIR filter has a system function that is a polynomial in z71 :

N
H(z) = z h(n) z~?
n=0

For an input x(n), the output is

H(z) = Z h(k) x(n — k)
k=0

2.1 Direct Form

The most common way to implement an FIR filter is in direct from using a tapped

delay line as shown in the figure below



x(n) O—b 0 . O

Y h(0} 1

2.2 Cascade Form

For a causal FIR filter, the system function may be factored into a product of first-

order factors,

N N
H(z) = z h(n)z™ = A 1_[(1 —apz )
n=0 k=1

Where «; for k =1, ..., N are the zeros of H(z). If h(n) is real, the complex roots

of H(z) occur in complex conjugate pairs, and these conjugate pairs may be

combined to form second-order factors with real coefficients,

N
H(z) = A 1_[[1 + by (D2t + by (2)272]
k=1

H(z) may be implemented as a cascade of second-order FIR filter as illustrated in

Figure below.

3R FILTER DESIGN
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3.1 Butterworth Filters

A unity-gain Butterworth low-pass filter has a transfer function whose magnitude is

given by

1
|H, G| = (3.1

Where n is an integer that denoted the order of the filter.

1.  The cutoff frequency is Q. rad/s for all value of n.
2. If n is large enough, the denominator is always close to unity when Q < Q.

3. In the expression for |H,, (jQ)| , the exponent of is always /€. even.

To derive H(s) , letus set Q. = 1 rad/s (prototype filter), and note that

|Hn(jﬂ)|2 = Hn(iQ)Hn(_jQ) = 1 4+ 2n

But because s = jQ , we can write
|Hn ()| = Hy(s)Hn(—5)
Thus,

|Hp(s)I? = W

The procedure for finding H,,(s) for a given value of n is as follows:
1. Find the roots of the polynomial
1+ (s/)H =0
or
s = —1(j)?" = (—1)"+!

for n odd: s = 1/ km/n, k=0,1,2,...,2n—1
forneven: S = 1/77/2n + kw/n, k=0,1,2,...,2n—1

2. Assign the left-half plane roots to H, (s) and the right-half plane roots to
H,(—s).



3. Combine terms in the denominator of H,, (s)to form first-and second-order

factors.

H,, (s) can be written in the following form:

[Hn ()17

Ims

i

7 :f*ﬁ/n

x/\ =/n

»— Re s

™

Table (3.1): Butterworth Polynomials in Standard and Factored Forms

=/n
n

x
T
§ox

x
(@)

LHP
Poles of H,_ (s)

S

X% wfn
P

1 $ /

X\lﬂn
3 W

. Unit

circle

RHP
Poles of H_(—s)

For

'n odd

1

1

poles

/*‘i‘x___ &};’

" Tlimr 5—s1)  B(s)

=/n

Tx =/n
x 'J{:[’Z 3

n
—>— Re s

=

win

)

Poles of A, (s}

4
X.

LHP

xx\!:'u'/?n

.-'XX\

Unit
x circle
RHP
Poles of A, (—s)
For n eyen

(3.2)



Standard form

B sl = a5 + 8,_,5 "% - + 8,8 + &
E._ E; EE 3_5 Ha 3; a: dy _a'qln:. i
i I I
[ W2 I 2
L 2 2 i 3
1 2.613 3414 24613 ] 4
] 2.236 5.236 5.236 3,236 | 5
1 1564 7,464 T.141 7464 1844 I (]
1 404 10,103 14 &5 14 a0 10,103 4 444 | T
1 5126 13,138 1848 25_6%1 ?1.E48 13,123 5126 L B
Faclored form
B.[=) n
5+ I 1
PR T O 2
(2 4+ 5+ 105 + 1) 3
{52 + 0.78536: + 10z + 1.B4778s5 + 1) 4
) (5 + 1M + 061805 + 1057 + 161805 + 1) 5
G 051765 + 1Kt 4+ WIF + I+ 193185 + 1) a
[z + I}s* + 044505 + 137 + 124565 + IWs® + 1.8032: + 1) 7
(4% 030865 + IHs" + 111105 + 1J0s7 + 1.66305 + 1)¢s? + 1. 96225 + 1) B

Bumterworih filter

1 L
g Fa, "+ +as+t 1 B

His) =

Example 3.1: Find the transfer function H,,(s) for the normalized Butterworth filter

of order 2.

Solution: since n = 2 we have the poles of H,(s) H,(—s) given by

se=1/m/4 + kn/2, k=0,1,2,3

Therefore, the four roots are



i = l.»_' 45" = l,"lﬂ + ffﬂ‘ s-plane
5 = 1/135° = —1/V3 + j/V3, SIS
RN - s .
: : roy \c"{f’_ T \,‘_‘,.-r'— Unit
i3 = 1{225} = —l,f\fz + ‘—ffvrz, r" I ‘ﬂ\ /4,\ pd circle
B bl C | !
W= 13157 = VI + —jjvE. T TS /!
. B é._._ - ."lr + _Jr."r " 1'\ .I # \\“ !
1\I f( " r'."
¥ — == =1=0707=X
ok T - T4

Using the left-half plane poles we can express the transfer function as follows

1

H8) = oG =59

1
[s — (=0.707 — 0.707)][s — (=0.707 + 0.707))]

1
Cs2+42s+1
3.2 The Order of a Butterworth Filter |H(jw)| dB
. . . . Pass || Transition band :San band
In the design of a low-pass filter, the filtering band | 0, 2, |

K F—-—4-= Iogye

specifications are usually given in terms of the n

abruptness of the transition region, as shown in .

Figure beside. Once K;, Q,, K, and Q, are

specified, the order of the Butterworth filter,

K1 - 20 l0g10

Q 2n
K, = =10 logy, (1 + (Q—l) ) (3.3)



1

KZ = 20 log10
QZ 2n
1+ ('Q_c)
QZ 2n
c

If we wish to satisfy our requirement of Q. at Q, exactly and do better than our

requirement at ), we use

(&)™ = 10014 —1 (3.5)

While if we wish to satisfy our requirement at 2, and exceed our requirement at Q,
we use
QZ 2n
—=) =10"01% -1 3.6
&) 36
Dividing Eqn.(3.6) by (3.5) to cancel Q. we have

0\°" 10701z —q
=) = 3.7
<Ql> 10701k — 1 (37
A simple closed form answer for is easily obtained from this expression and is given
by
lo 10—0.1K1 -1 10—0.1K2 -1
n = 910l( )/( ) (3.8)

Q
2logio ot
910 Q,
Where is the next larger integer.

Example 3.2:

a) Determine the order of a Butterworth filter that has a cutoff frequency of 1000
Hz and a gain of no more than -50 dB at 6000 Hz.
b) What is the actual gain in dB at 6000 Hz?

Solution:

a) The critical requirements are



1

Q, = O, = 27(1000)rad/s K, = 20l0gy, (ﬁ

) = —3dB

Q, = 2n(6000)rad/s K, < —-50dB

Substituting these requirements into Eqn.(3.8) gives

log1o[(107%151 — 1) /(10701%2 — 1)

Q
2log,, Q—;

_ lOglo[(lo‘O-l(—3) - 1)/(10—0.1(—50) —1)

27(1000)
2l0g10 (2n(6000))

n=[3.21] = 4

Therefore, we need a 4" order Butterworth filter.

b) We can use Eq.(3.4) to calculate the actual gain at 6000 Hz. The gain in

decibels will be

1
Kz(actual) - 20 log10 - —6225 dB

21(6000))*™
1 (2n(1000))

Example 3.3:

a) Determine the order of a Butterworth filter whose magnitude is 10 dB or
better less than the passband magnitude at 500 Hz and at least 60 dB less than
the passband magnitude at 5000 Hz.

b) Determine the cutoff frequency of the filter (in hertz).

c) What is the actual gain of the filter (in decibels) at 5000 Hz?

Solution:
a) The critical requirements are

Q, = 2m(500)rad/s K; = —10dB



Q, = 2m(5000)rad/s K, < —60dB

log1o[(107%151 — 1) /(107%1%2 — 1)

Q
21 =1
0910 0,
. loglo[(lo—o.l(—lo) _ 1)/(10—0.1(—60) _ 1) B [2 52] _ .
- 500 o -
2log10 (5p00)

Therefore we need a 3" order Butterworth filter to meet the specifications.
b) To do better at 500 Hz, we have to use Eq. 3.5, to determine the cutoff

frequency.

2(3)
<2n(500)> _ 100140 _ 1
Q¢

rad

Then, 0, = 2178.26 = (f, = 346.68 Hz)

c) The actual gain of the filter at 5000 Hz is

KZ(actual) == 20 log10 == _6954‘ dB
5000 )2(3)

3.3 Analog-to-Analog Transformations

If we replace s of H(s), the system function for a normalized low-pass filter, by
s/Q,,, we get a new transfer function H'(s) ,given by
H'(s) = H(S)lsos/0, = H(s/Q,)
If we evaluate the magnitude of the transfer function at to get the frequency
response we have
|[H'GD| = [HGQ/Q,)]
At the value of Q = Q,, we have
|H' ()] = [HGQ, /)| = [HGD)|
That is, the frequency response for the new transfer function evaluated Q = Q,, at is

equal to the value of the normalized transfer function at Q = 1. In a sense we have



moved the cut off frequency from 1 rad/s to Q, and thus have a scaling of the
frequency axis. Similar transformations can be defined for taking low-pass transfer
functions to high-pass, bandpass and bandstop transfer functions. Table (3.2) gives
these transformations.

TABLE 3.2 ANALOG-TO-ANALOG TRANSFORMATION

—— - e

Design egualions

Frototype response  Transformed filter response

] X leg 1G (8 o 10 log |F¢0E)
K| -"'_I .It, ___'
i
Ky pamada a F o —a a
10 o, o )

Lowapase f 5

Forward: 17 = 1301,
Backward: 1, = 1./01,

5= 55, Low-pass H()

10 leg 162}

Forward: 00 = 1,/01,
Backward: {1, = 0}, /(1.

1, a2, 0,
Low.pats G5) L= ﬂu,.fs Hl'gi'_l-p:.!.l HIE)

o410 log 1G (1)1 . o420 o8 1H U]
Fole=—s - o
i : LY ! ’
Koy o - Ka‘ - -1-—--:-
3 s Ly

Forward: 03, = (N, = N)/2
nt = (nfni'v + ﬂinu\)jfr - ﬂlﬂﬂr
ﬂ: - (ﬂfﬂfv + nrnp}lrz + ﬂ.,‘]—,

1, n, 0, 0,0 Backward: {1, = min(lAl, 18}
Law-pae S5} 5= m Bandpass &(.5) A = ;._ni o nrﬂu)f[nufﬂ. — -ﬂr]'}
S B = (+0} - 0/, - 0,)]
g4 20 log Jer iz} o 0 log 1M Forward: £1,, = ([}, — [},)/2
"‘"['"' h £, -- N, = [f1,./0,7 + 40,1V - 0,./0,
K : P 1 N, = (/) + 0.7 + 0,/0,
T ==k 2 P i
—-—;_n, — 5 a, a, n?n_"‘ﬂ Backward: 11, = min{}4], |8}

Laow-paws & [5) Sty — i) Bandstop f{5)

-8
& ‘-nlﬂt

A =040, - ﬂ,}f[—.ﬂi -+ ﬂ:ﬂu]
8 = (0, — O)[~-0]+ 0,0.)

Example 3.4: Design an analog Butterworth filter that has a -2 dB or better cutoff

frequency of 20 rad/sec and at least 10 dB of attenuation at 30 rad/sec.

Solution: the critical requirements are
Ql = 20 y K1 = -2

l0g10[(10701F1 —

1)/(10%1K: — 1)

l0910 [(10—0.1(—2) _ 1)/(10—0.1(—10) _ 1)

Q
2log,, Q—;‘

2logqo (

30

= [3.3709] = 4



Using this value of n to exactly satisfy the -2 dB requirement gives
Q. =20/(107%1(=2 — 1)/8 = 21.3868
The normalized low-pass Butterworth filter for n = 4, can be found from Table

(3.1) as
1
(s2 4+ 0.765365 + 1)(s? + 1.84776s + 1)

Applying a low-pass to low-pass transformation, s = s/, with Q, = 21.3868

H,(s) =

gives the desired transfer function as follows:

H(s)= H4(S)|S_’21 3563

1

|(z3m28) + 076536 (77338) + 1
1

[(szw)2 +1.84776 (21;%) + 1]

~ 2.09210 x 105
~ (s + 16.3686s + 457.394)(s2 + 39.51765 + 457.394)

3.4 Design of Bandpass Butterworth filter
The procedures for the design of a bandpass filter Hgp (), to satisfy the given set of

X

specifications is composed of two steps.
1. Design a low-pass filter H;p (s) with (,,
2. Apply the low-pass to bandpass transformation using the desired ,, and Q.

(dBY J 20 10g 1 H(FED) |

l 1 ) | .
RL n.‘ ﬂu n:n_ L9

Example 3.5: Design an analog bandpass filter with the following characteristics:




(a)-3.0103 dB upper and lower cutoff frequency of 20 kHz and 50 Hz
respectively
(b) A stopband attenuation of at least 20 dB at 20 Hz and 45 kHz.
Solution: From the specifications above we can identify the following critical
frequencies:
Q, = 2m(20) = 125.663 rad/sec
Q, = 2m(45) = 2.82743 x 10°rad/sec
Q, = 2m(20) = 1.25663 x 10° rad/sec
Q; = 2n(50) = 314.159 rad/sec
Also the low-pass prototype must satisfy
0 > 20log|H,p(j1)| = —3.0103 dB
20log|H.p(jQ, )| < —20dB
From Table (3.2)
A = 2.5053
B = 2.2545
Since,
O, = min {|A], |B[}
Q. = 2.2545

The low-pass Butterworth filter of order n is

n= ”log (102:)0210—21_ 1)]/ [Zlog (2.21545)H = 128291 =3

From the Butterworth Table (3.1) and n we have the low-pass prototype as
1
T 324252+ 25+ 1
The required analog-to-analog transformation is determined from (,, and Q; as
s+ 0,0, s?+3.94784 x 107
TS0, Q) s(1.25349 x 108)

Hgp(s) then is finally seen to be

Hpp

S



Hgp(s) =

1

[sz +3.94784 x 107]3 o [52 +3.94784 x 107]%)
s(1.25349 x 10°5) s(1.25349 x 105)

52 +3.94784 x 107 f

s(1.25349 x 10°5)

; B 1.969530 x 101553
sp(s) = {56 +2.5069909 X 105s5 + 3.15434 x 101054}

+2

+1.9893 x 10%°s3 + 1.245285 x 101852
+3.9072593 x 102%s 4+ 6.15289108 x 1022

3.5 Chebyshev Filters

Chebyshev filters are defined in terms of the Chebyshev polynomials:

cos(ncos™tx) x| <1

3.9
cosh(ncosh™x) |x|>1 (3.9a)

T = {

These polynomials may be generated recursively as follows,

T,(x) =2xT,_1(x) = T,,_,(x) n=2 (3.9h)
With Ty(x) = 1 and T, (x) = x . a list of the first seventh Chebyshev polynomials is
given in Table (3.3) for reference.

Table (3.3) the first seventh Chebyshev polynomials

n T,(x)

0 1

1 X

2 2x% —1

3 4x3 — 3x

4 8x* —8x%2+1

5 16x> — 20x3 + 5x

6 32x% —48x* + 18x%2 — 1
7 64x” —112x° + 56x3 — 7x

The following properties of the Chebyshev polynomials follow from Eqn.(3.9).

1. For |x| < 1 the polynomials are bounded by 1 in magnitude, |T,,(x)| < 1, and
oscillate between +1. For |x| > 1, the polynomials increase monotonically
with Xx.

2. T,(1)=1foralln.



3. T,(0) = +1forn even, and T,,(0) = 0 for n odd.
4. All of the roots of T,,(x) are inthe interval —1 < x < 1.

The magnitude square of the frequency response for type | Chebyshev filter is

H, (iQ)|? =
| GO 1+ €2T2(Q)

Where n is the order of the filter, and € is parameter that controls the passband ripple
amplitude. Because T,?(Q)varies between 0 and 1 for |Q] < 1, |H,(jQ)|? oscillate
between 1 and 1/(1+ €?). As the order of the filter increases, the number of
oscillations (ripples) in the passband increases, and the transition width between the
passband and stopband becomes narrower. Example are given in Fig.(3.3) forn = 5
and 6.
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Fig.(3.3)
Form the rational function

|Hn(s)|2 = Hp(s)Hp(—5s) =

1+ €2T2(s/))
Construct the system function H,,(s) by taking the n poles that lie in the left-half s-
plane.
K K
Mutr (5—s1)  Va(s)

poles

H,(s) =




Where K is a normalizing factor whose value makes H,,(0) equal 1 for n odd and

1/V1 + e2for n even.
K =V,(0) = b, n odd
K = LO) n even
Ja+e)
V,(s) =s™+ b,_4s"" 1+ .-+ b,s+ b,
The order n that satisfied ripple characterized by € and a stopband gain 1/4 at a

particular £, is given by

logiolg + (g* = D'?]
logse |2 + (2,2 - 1)"]

n=

Where
A=1/|H,(Q)I
g =[(4*-1)/e]"/?
Table(3.4)gives the V,(s) in polynomial form n = 1 for to 10 and corresponding to
0.5,1, 2 and 3dB ripples.
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n=J3

n=4

n=9

n=§

n=17

n=38

n=9

n=10

= 18627782

- 07128122
=j1.0080425

~0.6264563

03282
=j1.0015778
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Example 3.6: Design a Chebyshev lowpass filter to satisfy the following

specifications:

(a) Acceptable passband ripple of 2 dB.
(b) Cutoff radian frequency of 40 rad/sec.

(c) Stopband attenuation of 20 dB or more at 52 rad/sec.

Solution: the general approach is

(a) Change the requirements to those of a lowpass unit bandwidth prototype;

Q= Q' _ 52 —13
T, 40
(b) Design a normalized Chebyshev lowpass filter with cutoff at 1rad/sec and

Q, =13

20log|H,(j1)| = 20log [1/y/1+€2| = -2 > € =076478
20log|H,,(j1.3)| = 20log[1/A] = =20 — A =10
g = [(100 — 1)/(0.76478)?]'/? = 13.01

_ 10910[9 + (g% — 1)1/2]
logy, [QT + (Qrz — 1)1/2]

_ [log10[13.01 + ((13.01)% — 1)V/?]
"o [ log,o[1.3 + ((1.3)? — 1)1/2]

‘ =[43]=5
Using the 2-dB ripple part of Table (3.4) forn = 5, H(0) = 1 (n odd), the desired
Chebyshev unit bandwidth lowpass filter is

Hs(s) = K/(s> + bys* + b3s3 + b,s? + bys + by



0.08172
s>+ 0.70646s* + 1.4995s3 + 0.6934s2 + 0.459349s + 0.08172

Hs(s) =
(c) From Table (3.2), apply the transformation s = s/40
Hy(s) = Hs(s)l,_ s
40

0.08172

B (45—0)5 +0.70646s* + 1.4995 (:—0)3 +0.6934 (45—0)2 +0.459349 (%) +0.08172

B 8.368128 x 10°
55 +28.25845% + 2399.253 + 44377.652 + 1.17593344 X 10°s + 8.368128 x 10°

3.6 The Bilinear Transformation

The bilinear transformation is a mapping from the s-plane to the z-plane defined by

21—2z71
s ==
Tl1+z1

Where 1/T is the sampling frequency which can be set to 1. Given an analog filter

with a system function H,;(s) , the digital filter is designed as follows:

21—z71
H(z) = Hq T1+z1

The steps involved in the design of a digital low-pass filter with a passband cutoff

frequency w,, stopband cutoff frequency w,, passband magnitude K, and stopband

magnitude K, ,are as follows:

1.

Prewar the passband and stopband cutoff frequencies of the digital filter, w, and
w-, using the following formula
Q; = z tan(&) =12
T 2

to determine the passband and cutoff frequencies of the analog low-pass filter.
Design an analog low-pass filter with the specifications ,, Q,, K; and K,.
Apply the bilinear transformation T = 1 to the filter designed in step2.



Example 3.7: Design and realize a digital low-pass filter using the bilinear

transformation method to satisfy the following characteristics:
(a)-3.01 dB cutoff frequency of 0.5x rad.
(b) Magnitude down at least 15 dB at 0.75m rad. The required frequency

response is shown below

dB L 20 log 1/ (e/v)]
T
} —
=10l
-135
Solution:
Step 1. Prewar critical frequencies using T = 1.
0; =2 tan( = 1,2
(=7 tan(=) i=1,

0.57
Q=2 tan(T) = 2.000

0.757
2

Q, = 2 tan( ) = 4.8282

Step 2.Design an analog low-pass filter with the specifications Q,, Q,, K; and K.

1 3.01/10 __ 1 1 15/10 __ 1
n = | 10910l (10 )/(10 )| _ [1.9412] = 2

20010 (755m2)

Using this value of n to exactly satisfy the -3.01 dB requirement gives



20
Q. = =2

1
(103.01/10 — 1)1

Therefore the required prewarped analog filter using the Butterworth Table (3.1)

and the low-pass to low-pass transformation from Table (3.2) is

1 4

H (s) = =
a(S) s2+V2s+ 1l , s2+2V2s+4

Step3 . Applying the bilinear transformation

H(z) = Ho(S)| 2121y

=@
_ 4
1201 -z 2(1—z71)
ST R dE ey R

B 14+2z71 4272
~ 3.4142135 + 0.585786522

~0.29289 + 0.58578z " + 0.292892 2
B 14+ 0.17157z2

Direct Il realization of this filter is shown below, where b, = 0.29289, b, =
0.58578,b, = 0.29289,a, = 0,a, = 0.17157



N, 1N >
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by 59
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The plot of 20 log|H (e/*)| versus w is shown below
20 log | 11 (efw))
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