
INTRODUCTION TO DIGITAL SIGNAL PROCESSING

1:General DSP system

The processing of digital signals is called DSP; in block diagram form it is represented

by

Prf: This is a prefilter or an antialiasing filter, which conditions the analog signal to

prevent aliasing.

ADC: This is called an analog-to-digital converter, which produces a stream of binary

numbers from analog signals.

Digital signal processor: This is the heart of DSP and can represent a general-purpose

computer or a special-purpose processor, or digital hardware, and so on.

DAC: This is the inverse operation to the ADC, called a digital-to-analog converter

which produces a stair case waveform from a sequence of binary numbers, a first step

towards producing an analog signal.

PoF: This is a postfilter to smooth out stair case waveform into the desired analog signal.

2-Drawback of analog signal processing (ASP)

A major drawback of ASP is its limited scope for performing complicated signal

processing applications. This translates into nonflexibility in processing and complexity

in system designs. All of these generally lead to expensive products.

3. Advantages of DSP

1. System using the DSP approach can be developed using software running on a

general-purpose computer. Therefore DSP is relatively convenient to develop and

test, and the software is portable.

2. DSP operations are solely on additions and multiplication, leading to extremely

stable processing capability-for example, stability independent of temperature.

3. DSP operations can easily be modified in real time, often by simple programming

change, or by reloading of registers.

4. DSP has lower cost due to VLSI technology, which reduces costs of memories,

gates, microprocessors, and so forth.

The principal disadvantage of DSP is the speed of operations, especially at very high

frequencies. Primarily due to the above advantages, DSP is now becoming a first choice in

many technologies and applications, such as consumer electronics, communications,

wireless telephones, and medical imaging.

4.Discrete-Time Signals

A discrete-time signal is a function of an integer-valued variable, 𝑛, that is denoted by

𝑥(𝑛).

The sequence values 𝑥(𝑛) to 𝑥(𝑁 − 1) may often be considered to be the elements of a

column vector as follows:

𝑥 = [𝑥(0), 𝑥(1),…… , 𝑥(𝑁 − 1)]𝑇 (4.1)

Discrete-time signals are often derived by sampling a continuous-time signal, such as

speech, with an analog to digital (A/D) converter. For example, a continuous-time signal

𝑥𝑎(𝑡) that is sampled at a rate of 𝑓𝑠 = 1/𝑇𝑠(𝑡) samples per second produces the sampled

signal 𝑥(𝑛) , which is related to 𝑥𝑎(𝑡) as follows:

𝑥(𝑛) = 𝑥𝑎(𝑛𝑇𝑠) (4.2)

Figure below show a segment of a continuous-time speech signal and the sequence of

samples that obtained from sampling it with 𝑇𝑠 = 125 µ𝑠.

4.1 Complex Sequences

A complex signal may be expressed either in term of its real and imaginary parts.

 𝑧(𝑛) = 𝑎(𝑛) + 𝑗𝑏(𝑛) = Re{z(n)} + jIm{z(n)} =

|𝑧(𝑛)| exp[𝑗 arg{𝑧(𝑛)}] (4.3)

 |𝑧(𝑛)|2 = 𝑅𝑒{𝑧(𝑛)}2 + 𝐼𝑚{𝑧(𝑛)}2

(4.4)

 arg{𝑧(𝑛)} = tan−1
𝐼𝑚{𝑧(𝑛)}

𝑅𝑒{𝑧(𝑛)}

(4.5)

Also

𝑧 ∗ (𝑛) = 𝑎(𝑛) − 𝑗𝑏(𝑛) = Re{z(n)} − jIm{z(n)} = |𝑧(𝑛)| exp[−𝑗 arg{𝑧(𝑛)}]

(4.6)

4.2 Some Fundamental Sequences

• Unit sample 𝜹(𝒏)

𝛿(𝑛) = {
1 𝑛 = 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.7)

• Unit step 𝒖(𝒏)

𝑢(𝑛) = {
1 𝑛 ≥ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.8)

𝑢(𝑛) = ∑𝛿(𝑛 − 𝑘) (4.9)

∞

𝑘=0

 𝛿(𝑛) = 𝑢(𝑛) − 𝑢(𝑛 − 1) (4.10)

• Exponential sequences

𝑥(𝑛) = 𝑎𝑛 (4.11)

Where a may be a real or complex number. For real a and 0 < a < 1, 𝑥(𝑛) is shown below

If 𝑥(𝑛) = 𝑒𝑗𝜔0 , 𝑥(𝑛) is complex exponential.

𝑥(𝑛) = 𝑒𝑗𝑛𝜔0 = cos(𝑛𝜔0) + 𝑗 sin(𝑛𝜔0) (4.12)

4.3 Periodic and aperiodic Sequences

A signal 𝑥(𝑛) is said to be periodic if, for some positive real integer N

𝑥(𝑛) = 𝑥(𝑛 + 𝑁) (4.13)

If 𝑥1(𝑛) is a sequence that is periodic with a period 𝑁1, and 𝑥2(𝑛) is another sequence

that is periodic with a period 𝑁2, the sum 𝑥(𝑛) = 𝑥1(𝑛) + 𝑥2(𝑛) or the product 𝑥(𝑛) =

𝑥1(𝑛) 𝑥2(𝑛) will always be periodic and the fundamental period is

𝑁 =
𝑁1𝑁2

g𝑐𝑑(𝑁1,𝑁2)
 (4.14)

Where g𝑐𝑑(𝑁1, 𝑁2) means the greatest common divisor of 𝑁1 and, 𝑁2

4.4 Symmetric Sequences

𝑥(𝑛) = 𝑥(−𝑛) → 𝑒𝑣𝑒𝑛 (4.15)

𝑥(𝑛) = −𝑥(−𝑛) → 𝑜𝑑𝑑 (4.16)

𝑥(𝑛) = 𝑥 ∗ (−𝑛) → 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 (4.17)

𝑥(𝑛) = −𝑥 ∗ (−𝑛) → 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 (4.18)

Any signal 𝑥(𝑛) may be decomposed into a sum of its even part, 𝑥𝑒(𝑛), and its odd

part, 𝑥𝑜(𝑛), as follows:

𝑥(𝑛) = 𝑥𝑒(𝑛) + 𝑥𝑜(𝑛) (4.19)

Where the even part of a signal 𝑥(𝑛) is given by

𝑥𝑒(𝑛) =
1

2
[𝑥(𝑛) + 𝑥(−𝑛)] (4.20)

Where the odd part of a signal 𝑥(𝑛) is given by difference

𝑥𝑜(𝑛) =
1

2
[𝑥(𝑛) − 𝑥(−𝑛)] (4.21)

The conjugate symmetric part of 𝑥(𝑛) is

𝑥𝑒(𝑛) =
1

2
[𝑥(𝑛) + 𝑥∗(−𝑛)] (4.22)

The conjugate antisymmetric part of 𝑥(𝑛) is

𝑥𝑜(𝑛) =
1

2
[𝑥(𝑛) − 𝑥∗(−𝑛)] (4.23)

4.5 Transformations of the Independent Variable

𝑦(𝑛) = 𝑥(𝑓(𝑛)) (4.24)

Where 𝑓(𝑛) is some function of 𝑛. The most common transformations are:

• Shifting: If 𝑦(𝑛) = 𝑥(𝑛 − 𝑛0), 𝑥(𝑛) is shifted to the right by 𝑛0 samples if 𝑛0

is positive (this is referred to as delay), and it is shifted to the left by 𝑛0 samples

if 𝑛0 is negative (referred to as an advance).

• Reversal: This transformation is given by 𝑓(𝑛) = −𝑛 and simple involves

"flipping" the signal 𝑥(𝑛) with respect to the index 𝑛.

• Time Scaling:

▪ Down-Sampling: 𝑓(𝑛) = 𝑀𝑛 the sequence 𝑥(𝑀𝑛) is formed by taking

every 𝑀𝑡ℎsample of 𝑥(𝑛).

▪ Up-Sampling: 𝑓(𝑛) = 𝑛/𝑁 the sequence 𝑦(𝑛) = 𝑥(𝑓(𝑛)) is defined as

follows:

𝑦(𝑛) = {
𝑥 (
𝑛

𝑁
) 𝑛 = 0,±𝑁,±2𝑁,… .

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4.6 Addition, Multiplication, and Scaling

▪ Addition: 𝑦(𝑛) = 𝑥1(𝑛) + 𝑥2(𝑛) − ∞ < 𝑛 < ∞

▪ Multiplication: 𝑦(𝑛) = 𝑥1(𝑛) 𝑥2(𝑛) − ∞ < 𝑛 < ∞

▪ Scaling: 𝑦(𝑛) = 𝑐𝑥(𝑛) − ∞ < 𝑛 < ∞

4.7 Signal Decomposition

The unit sample may be used to decompose an arbitrary signal 𝑥(𝑛) into a sum of

weighted and shifted unit samples as follows:

𝑥(𝑛) = ⋯+ 𝑥(−1)𝛿(𝑛 + 1) + 𝑥(0)𝛿(𝑛) + 𝑥(1)𝛿(𝑛 − 1) + 𝑥(2)𝛿(𝑛 − 2) +⋯

𝑥(𝑛) = ∑ 𝑥(𝑘)𝛿(𝑛 − 𝑘) (4.25)

∞

𝑘=−∞

Example 4.1:

Example 4.2: Given the sequence

 𝒙(𝒏) = 𝟐𝜹(𝒏 + 𝟐) + 𝜹(𝒏 + 𝟏) + 𝟐𝜹(𝒏) + 𝟒𝜹(𝒏 − 𝟏) + 𝜹(𝒏 − 𝟐) ,

make a sketch of:

a) 𝒚𝟏(𝒏) = 𝒙(𝒏 − 𝟐)

b) 𝒚𝟐(𝒏) = 𝒙(𝒏 + 𝟑)

c) 𝒚𝟑(𝒏) = 𝟐𝒙(𝒏 − 𝟏)

d) 𝒚𝟒(𝒏) = 𝒙(−𝒏)

Solution:

𝒙(𝒏) = 𝟐𝜹(𝒏 + 𝟐) + 𝜹(𝒏 + 𝟏) + 𝟐𝜹(𝒏) + 𝟒𝜹(𝒏 − 𝟏) + 𝜹(𝒏 − 𝟐)

a) 𝒚𝟏(𝒏) = 𝒙(𝒏 − 𝟐)

 (a)

b) 𝒚𝟐(𝒏) = 𝒙(𝒏 + 𝟑)

(b)

c) 𝒚𝟑(𝒏) = 𝟐𝒙(𝒏 − 𝟏)

(c)

d) 𝒚𝟒(𝒏) = 𝒙(−𝒏)

(d)

Example 4.3: Given the sequence 𝑥(𝑛) = (6 − 𝑛)[𝑢(𝑛) − 𝑢(𝑛 − 6)] , make

a sketch of:

a) 𝒚𝟏(𝒏) = 𝒙(𝟒 − 𝒏)

b) 𝒚𝟐(𝒏) = 𝒙(𝟐𝒏 − 𝟑)

c) 𝒚𝟑(𝒏) = 𝒙(𝟖 − 𝟑𝒏)

Solution:

𝒙(𝒏) = (𝟔 − 𝒏)[𝒖(𝒏) − 𝒖(𝒏 − 𝟔)]

a) 𝒚𝟏(𝒏) = 𝒙(𝟒 − 𝒏)

(a)

b) 𝒚𝟐(𝒏) = 𝒙(𝟐𝒏 − 𝟑)

(b)

c) 𝒚𝟑(𝒏) = 𝒙(𝟖 − 𝟑𝒏)

(c)

Example 4.4: A discrete-time signal 𝒙(𝒏) = [𝟏 𝟏̅ 𝟏 𝟏 𝟏
𝟏

𝟐
] ,

Sketch each of the following signals:

(a) x[n − 2]

 (b) x[4 − n]

(c) x[2n]

(d) x[n − 1]δ[n − 3].

Solution:

(d)

5. Discrete-Time System

In a discrete-time system an input signal 𝑥(𝑛) is transformed into an output signal

𝑦(𝑛) through the transformation 𝑇[∙]

5.1 System Properties

➢ Memoryless System: a system is memoryless if, for any 𝑛0 , we are able to

determine the value of 𝑦(𝑛0) given only the value of 𝑥(𝑛0).

Example 5.1:

1- 𝑦(𝑛) = 𝑥2(𝑛) is memoryless

2- 𝑦(𝑛) = 𝑥(𝑛) + 𝑥(𝑛 − 1) is not memoryless.

➢ Additivity: 𝑻[𝒙𝟏(𝒏) + 𝒙𝟐(𝒏)] = 𝑻[𝒙𝟏(𝒏)] + 𝑻[𝒙𝟐(𝒏)]

Example 5.2: The system defined by 𝑦(𝑛) =
𝑥2(𝑛)

x(𝑛−1)
 is additive

Solution: -

𝑻[𝒙𝟏(𝒏) + 𝒙𝟐(𝒏)] =
(𝑥1(𝑛) + 𝑥2(𝑛))

2

𝑥1(𝑛 − 1) + 𝑥2(𝑛 − 1)

𝑻[𝒙𝟏(𝒏)] + 𝑻[𝒙𝟐(𝒏)] =
𝑥1
2(𝑛)

𝑥1(𝑛 − 1)
+
𝑥2
2(𝑛)

𝑥2(𝑛 − 1)

The system 𝑦(𝑛) =
𝑥2(𝑛)

x(𝑛−1)
 is not additive because

𝑻[𝒙𝟏(𝒏) + 𝒙𝟐(𝒏)] ≠ 𝑻[𝒙𝟏(𝒏)] + 𝑻[𝒙𝟐(𝒏)]

➢ Homogeneity: 𝑻[𝒄𝒙(𝒏)] = 𝒄𝑻[𝒙(𝒏)]

Example 5.3: The system defined by 𝑦(𝑛) =
𝑥2(𝑛)

x(𝑛−1)

𝑻[𝒄𝒙(𝒏)] =
(𝑐𝑥(𝑛))2

𝑐𝑥(𝑛 − 1)
=
𝑐𝑥2(𝑛)

𝑥(𝑛 − 1)

𝒄𝑻[𝒙(𝒏)] = 𝑐
𝑥2(𝑛)

𝑥(𝑛 − 1)
=
𝑐𝑥2(𝑛)

𝑥(𝑛 − 1)

𝑻[𝒄𝒙(𝒏)] = 𝒄𝑻[𝒙(𝒏)]

This system is, homogeneous

Example 5.4: the system defined by the equation

𝑦(𝑛) = 𝑥(𝑛) + 𝑥∗(𝑛 − 1)

𝑻[𝒙𝟏(𝒏) + 𝒙𝟐(𝒏)] = [𝑥1(𝑛) + 𝑥2(𝑛)] + [𝑥1(𝑛 − 1) + 𝑥2(𝑛 − 1)]
∗

= [𝑥1(𝑛) + 𝑥1
∗(𝑛 − 1)] + [𝑥2(𝑛) + 𝑥2

∗(𝑛 − 1)]

𝑻[𝒙𝟏(𝒏)] + 𝑻[𝒙𝟐(𝒏)] = [𝑥1(𝑛) + 𝑥1
∗(𝑛 − 1)] + [𝑥2(𝑛) + 𝑥2

∗(𝑛 − 1)]

Is additive because

𝑻[𝒙𝟏(𝒏) + 𝒙𝟐(𝒏)] = 𝑻[𝒙𝟏(𝒏)] + 𝑻[𝒙𝟐(𝒏)]

for homogeneous Property he response to 𝑐𝑥(𝑛) is

𝑻[𝒄𝒙(𝒏)] = 𝑐𝑥(𝑛) + 𝑐∗𝑥∗(𝑛 − 1)

𝒄𝑻[𝒙(𝒏)] = 𝑐𝑥(𝑛) + 𝑐𝑥∗(𝑛 − 1)

this is not homogeneous because the response to 𝑐𝑥(𝑛) is

𝑻[𝒄𝒙(𝒏)] ≠ 𝒄𝑻[𝒙(𝒏)]

➢ Linear System: A system that is both additive and homogeneous is said to be

linear. Thus,

𝑇[𝑎1𝑥1(𝑛) + 𝑎2𝑥2(𝑛)] = 𝑎1𝑇[𝑥1(𝑛)] + 𝑎2𝑇[𝑥2(𝑛)] (5.1)

➢ Shift-Invariance

Let 𝑦(𝑛) = 𝑇[𝑥(𝑛)] , then if 𝑦(𝑛 − 𝑛𝑜) = 𝑇[𝑥(𝑛 − 𝑛𝑜)] , the system is considered as

time invariant system. A system that is not shift-invariant is said to be shift-varying.

Example 5.6: to test system defined by 𝑦(𝑛) = 𝑥2(𝑛) is shift-invariant.

𝑦(𝑛) = [𝑥(𝑛)]2 → 𝑦(𝑛 − 𝑛𝑜) = 𝑥
2(𝑛 − 𝑛𝑜)

 𝑦′(𝑛) = [𝑥′(𝑛)]2 = [𝑥(𝑛 − 𝑛𝑜)]
2 = 𝑥2(𝑛 − 𝑛𝑜)

Because 𝑦(𝑛 − 𝑛𝑜) = 𝑦
′(𝑛), the system is shift-invariant.

Example 5.7: the system described by the equation 𝑦(𝑛) = 𝑥(𝑛) + 𝑥(−𝑛) is shift-

varying.

Solution: The shifted output 𝑦(𝑛 − 𝑛𝑜) = 𝑥(𝑛 − 𝑛𝑜) + 𝑥(−(𝑛 − 𝑛𝑜))

 𝑥′(𝑛) = 𝑥(𝑛 − 𝑛𝑜),then

𝑦′(𝑛) = 𝑥′(𝑛) + 𝑥′(−𝑛) = 𝑥(𝑛 − 𝑛𝑜) + 𝑥(−𝑛 − 𝑛𝑜) .

. Because 𝑦(𝑛 − 𝑛𝑜) ≠ 𝑦
′(𝑛), the system is shift-varying.

➢ Linear shift-Invariant System: A system that is both linear and shift-invariant

is referred to as a linear shift-invariant (LSI) system. The output 𝑦(𝑛) is given

by

𝑦(𝑛) = ∑ 𝑥(𝑘)ℎ(𝑛 − 𝑘)

∞

𝑘=−∞

 (5.2)

Which is known as the convolution sum 𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛)

➢ Causality: A system to be causal if, for any 𝑛𝑜 , the response of the system at

time 𝑛𝑜 depends only on the input up to time 𝑛 = 𝑛𝑜 . An LSI system will be

causal if and only if ℎ(𝑛) is equal to zero for 𝑛 < 0.

Example 5.5: the system described by the equation 𝑦(𝑛) = 𝑥(𝑛) + 𝑥(𝑛 − 1) is causal

because the value of the output at any time 𝑛 = 𝑛𝑜 depends only on the input 𝑥(𝑛) at

𝑛𝑜 and at time 𝑛𝑜 − 1 .

Example 5.6:The system described by 𝑦(𝑛) = 𝑥(𝑛) + 𝑥(𝑛 + 1), is noncausal because

the output at time 𝑛 = 𝑛𝑜 depends on the value of the input at time 𝑛𝑜 + 1 .

➢ Stability: A system is said to be stable in the bounded input-bounded output

(BIBO) sense if, for any input that is bounded, |𝑥(𝑛)| ≤ 𝐴 ≤ ∞ , the output

will be bounded, |𝑦(𝑛)| ≤ 𝐵 ≤ ∞

For a LSI system, stability is guaranteed if the unit sample response is absolutely

summable:

∑ |ℎ(𝑛)| < ∞

∞

𝑘=−∞

 (5.3)

Example 5.7: an LSI system with unit sample response ℎ(𝑛) = 𝑎𝑛𝑢(𝑛) will be stable

whenever |𝑎| < 1 , because

∑ |ℎ(𝑛)|

∞

𝑛=−∞

= ∑|𝑎|𝑛
∞

𝑛=0

=
1

1 − |𝑎|
 |𝑎| < 1

Example 5.8: The system described by the equation 𝑦(𝑛) = 𝑛𝑥(𝑛) , is not stable

because the response to a unit step, 𝑥(𝑛) = 𝑢(𝑛) , is 𝑦(𝑛) = 𝑛𝑢(𝑛) , which is

unbounded.

The z-transform

The z-transform of a discrete-time signal x[n] is defined by

𝑋(𝑍) = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

Where 𝑧 = 𝑟𝑒𝑗𝑤 is a complex variable. The values of 𝑧 for which the sum converges

define a region in the z-plane referred to as the region of convergence (ROC). If 𝑥(𝑛)

has a z-transform 𝑋(𝑧) , we write

𝑥(𝑛)
𝑧
↔𝑋(𝑧)

Example 6.1: Find the z-transformer of the sequence 𝑥(𝑛) = 𝑎𝑛𝑢(𝑛).

Solution: Using the definition of the z-transform and geometric series given in table

,we have

𝑋(𝑍) = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

= ∑ 𝑎𝑛𝑢(𝑛)𝑧−𝑛 =

∞

𝑛=−∞

∑𝑎𝑛𝑧−𝑛
∞

𝑛=0

= ∑(𝑎𝑧−1)𝑛
∞

𝑛=0

=
1

1 − 𝑎𝑧−1
=

𝑧

𝑧 − 𝑎

Considered the z-transform of a right-sided sequence, which led to a region of

convergence that is the exterior of a circle. ROC |𝑧|>|𝑎|

Example 6.2: find the z-transform of the sequence 𝑥(𝑛) = −𝑎𝑛𝑢(−𝑛 − 1) .

Solution: Proceeding as in the previous example, we have

𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

= ∑ −𝑎𝑛𝑢(−𝑛 − 1)𝑧−𝑛
∞

𝑛=−∞

= − ∑ 𝑎𝑛𝑧−𝑛

1

𝑛=−∞

= −∑𝑎−𝑛−1𝑧𝑛+1
∞

𝑛=0

= −∑(𝑎−1𝑧)𝑛+1
∞

𝑛=0

= −𝑎−1𝑧∑(𝑎−1𝑧)𝑛
∞

𝑛=0

= −
𝑎−1𝑧

1 − 𝑎−1𝑧

=
1

1 − 𝑎𝑧−1
=

𝑧

𝑧 − 𝑎

 ROC |𝑧| < |𝑎|

Note: Comparing the z-transforms of the signals in Example 6.1 and 6.2, we see that

they are the same, differing only in their regions of convergence. Thus, the z-

transform of a sequence is not uniquely defined until its regions of convergence has

been specified.

Example 6.3: Find the z-transform of 𝑥(𝑛) = (
1

2
)
𝑛
𝑢(𝑛) − (2)𝑛𝑢(−𝑛 − 1) , and

find another signal that has the same z-transform but a different region of

convergence.

Solution: Here we have a sum of two sequences. Therefore, we may find the z-

transform of each sequence separately and add them together. From Example 6.1,

we know that the z-transform of 𝑥1(𝑛) = (
1

2
)
𝑛
𝑢(𝑛) is

𝑋1(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

= ∑ (
1

2
)
𝑛

𝑢(𝑛)𝑧−𝑛 =

∞

𝑛=−∞

∑(
1

2
)
𝑛

𝑧−𝑛

∞

𝑛=0

=∑((
1

2
) 𝑧−1)

𝑛∞

𝑛=0

𝑋1(𝑧) =
1

1−
1

2
𝑧−1

 |𝑧| > |
1

2
|

And from Example 6.2 that the z-transform of 𝑥2(𝑛) = −2
𝑛𝑢(−𝑛 − 1)

𝑋2(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
∞

𝑛=−∞

= ∑ −2𝑛𝑢(−𝑛 − 1)𝑧−𝑛
∞

𝑛=−∞

= − ∑ 2𝑛𝑧−𝑛

1

𝑛=−∞

= −∑2−𝑛−1𝑧𝑛+1
∞

𝑛=0

= −∑(2−1𝑧)𝑛+1
∞

𝑛=0

= −2−1𝑧∑(2−1𝑧)𝑛
∞

𝑛=0

= −
2−1𝑧

1 − 2−1𝑧

=
1

1 − 2𝑧−1

𝑋2(𝑧) =
1

1−2𝑧−1
 |𝑧| < |2|

Therefore, the z-transform of 𝑥(𝑛) = 𝑥1(𝑛) + 𝑥2(𝑛) is

𝑋(𝑧) = 𝑋1(𝑧)+𝑋2(𝑧)

 𝑋(𝑧) =
1

1−
1

2
𝑧−1
+

1

1−2𝑧−1
=

2−
5

2
𝑧−1

(1−
1

2
𝑧−1)(1−2𝑧−1)

With a region of convergence
1

2
< 𝑧 < 2, which is the set of all points that are in the

ROC of both 𝑋1(𝑧) and 𝑋2(𝑧) .

To find another sequence that has the same z-transform, note that because 𝑋(𝑧) is a

sum of two z-transforms,

𝑋(𝑧) =
1

1 −
1
2
𝑧−1

+
1

1 − 2𝑧−1

Each term corresponds to the z-transform of either a right-sided or a left –sided

sequence, depending upon the region of convergence. Therefore, choosing the right-

side sequences for both terms, it follows that

𝑥́(𝑛) =
1

2

𝑛

𝑢(𝑛) + 2𝑛𝑢(𝑛)

Has the same z-transform as𝑥(𝑛) , except that the region of convergence is |𝑧| >

|2| .

6.1 Properties of z-transform

1.Time Shifting

If 𝑥(𝑛)
𝑍.𝑇
↔ 𝑋(𝑧) then 𝑥(𝑛 − 𝑛𝑜)

𝑍.𝑇
↔ 𝑍−𝑛𝑜𝑋(𝑧)

Proof: 𝑥(𝑛 − 𝑛𝑜)
𝑍.𝑇
↔ 𝑍−𝑛𝑜𝑋(𝑧)

𝑍{𝑥(𝑛 − 𝑛𝑜)} = ∑ 𝑥(𝑛 −

∞

𝑛=−∞

𝑛𝑜) 𝑍
−𝑛

Assume that 𝑘 = 𝑛 − 𝑛𝑜 → 𝑛 = 𝑘 + 𝑛𝑜

∴ 𝑍{𝑥(𝑛 − 𝑛𝑜)} = ∑ 𝑥(

∞

𝑘=−∞

𝑘) 𝑍−(𝑘+𝑛𝑜) = ∑ 𝑥(

∞

𝑘=−∞

𝑘) 𝑍−𝑘−𝑛𝑜

= 𝑍−𝑛𝑜 ∑ 𝑥(

∞

𝑘=−∞

𝑘) 𝑍−𝑘

= 𝑍−𝑛𝑜𝑋(𝑧)

2. Multiplication by an Exponential Sequence

𝑦(𝑛) = 𝑍𝑜
𝑛𝑥(𝑛) then 𝑌(𝑧) = 𝑋(

𝑧

𝑧𝑜
)

Proof: 𝑦(𝑛) = 𝑍𝑜
𝑛𝑥(𝑛) then 𝑌(𝑧) = 𝑋(

𝑧

𝑧𝑜
)

𝑌(𝑍) = ∑ 𝑦(𝑛)𝑧−𝑛
∞

𝑛=−∞

𝑌(𝑍) = ∑ 𝑍𝑜
𝑛𝑥(

∞

𝑛=−∞

𝑛) 𝑧−𝑛 = ∑ 𝑥(

∞

𝑛=−∞

𝑛) (
𝑧

𝑧𝑜
)
−𝑛

= 𝑋 (
𝑧

𝑧𝑜
)

3.Differentiation of F(z)

𝑓(𝑛)
𝑍.𝑇
↔ 𝐹(𝑧) then 𝑛𝑓(𝑛)

𝑍.𝑇
↔ −𝑧

𝑑𝐹(𝑧)

𝑑𝑧

Proof: 𝑓(𝑛)
𝑍.𝑇
↔ 𝐹(𝑧) then 𝑛𝑓(𝑛)

𝑍.𝑇
↔ −𝑧

𝑑𝐹(𝑧)

𝑑𝑧

𝐹(𝑧) = ∑ 𝑓(𝑛)𝑧−𝑛
∞

𝑛=−∞

−𝑧
𝑑𝐹(𝑧)

𝑑𝑧
= −𝑧 ∑ −𝑛𝑓(𝑛)𝑧−𝑛−1

∞

𝑛=−∞

= −𝑧 ∑ −𝑛𝑓(𝑛)𝑧−𝑛𝑧−1
∞

𝑛=−∞

= ∑ 𝑛𝑓(𝑛)𝑧−𝑛
∞

𝑛=−∞

𝑛𝑓(𝑛)
𝑍.𝑇
↔ − 𝑧

𝑑𝐹(𝑧)

𝑑𝑧

4. Conjugation of a complex sequence

𝑓(𝑛)
𝑍.𝑇
↔ 𝐹(𝑧) then 𝑓∗(𝑛)

𝑍.𝑇
↔ 𝐹∗(𝑧∗)

Proof: 𝑓(𝑛)
𝑍.𝑇
↔ 𝐹(𝑧) then 𝑓∗(𝑛)

𝑍.𝑇
↔ 𝐹∗(𝑧∗)

𝐹(𝑍) = ∑ 𝑓(𝑛)𝑧−𝑛
∞

𝑛=−∞

𝑍{𝑓∗(𝑛)} = ∑ 𝑓∗(𝑛) 𝑧−𝑛
∞

𝑛=−∞

= (∑ 𝑓(𝑛)(𝑧∗)−𝑛
∞

𝑛=−∞

)

∗

= 𝐹∗(𝑧∗)

5.Time Reversal

𝑓(−𝑛)
𝑍.𝑇
↔ 𝐹 (

1

𝑍
)

Proof: 𝑓(−𝑛)
𝑍.𝑇
↔ 𝐹 (

1

𝑍
)

𝑍{𝑓(−𝑛)} = ∑ 𝑓(

∞

𝑛=−∞

− 𝑛) 𝑍−𝑛

Let 𝑘 = −𝑛

= ∑ 𝑓(

∞

𝑘=−∞

𝑘) 𝑍𝑘 = ∑ 𝑓(

∞

𝑘=−∞

𝑘) (
1

𝑧
)
−𝑘

= 𝐹 (
1

𝑧
)

6.Convolution of Sequences

𝑥1(𝑛) ∗ 𝑥2(𝑛)
𝑍.𝑇
↔ 𝑋1(𝑧)𝑋2(𝑧) ,ROC 𝑅𝑥1 ∩ 𝑅𝑥2

Let

𝑦(𝑛) = ∑ 𝑥1(𝑘)

∞

𝑛=−∞

𝑥2(𝑛 − 𝑘)

So that

𝑌(𝑍) = ∑ 𝑦(𝑛)

∞

𝑘=−∞

𝑧−𝑛

𝑌(𝑍) = ∑ { ∑ 𝑥1(𝑘)

∞

𝑘=−∞

𝑥2(𝑛 − 𝑘)}

∞

𝑛=−∞

𝑧−𝑛

If we interchange the order of summation

𝑌(𝑍) = ∑ 𝑥1(𝑘) ∑ 𝑥2(𝑛 − 𝑘)

∞

𝑛=−∞

∞

𝑘=−∞

𝑧−𝑛

Let 𝑚 = 𝑛 − 𝑘

𝑌(𝑍) = ∑ 𝑥1(𝑘){ ∑ 𝑥2(𝑚)

∞

𝑚=−∞

∞

𝑘=−∞

𝑧−𝑚}𝑧−𝑘

𝑌(𝑍) = ∑ 𝑥1(𝑘)𝑧
−𝑘{ ∑ 𝑥2(𝑚)

∞

𝑚=−∞

∞

𝑘=−∞

𝑧−𝑚}

𝑌(𝑍) = 𝑋1(𝑍). 𝑋2(𝑍)

Example 6.4: Find the z-transform of 𝑥(𝑛) = 𝑛𝑎𝑛𝑢(−𝑛) .

Solution: To find 𝑋(𝑧) , we will use the time-reversal and derivative

properties. First, as we saw in Example 6.1 ,

(𝑎)𝑛𝑢(𝑛)
𝑍
↔

1

1−𝑎𝑧−1
 ROC |𝑧| > 𝑎

Therefore,

(𝑎−1)𝑛𝑢(𝑛)
𝑍.𝑇
↔

1

1−𝑎−1𝑧−1
 ROC |𝑧| >

1

𝑎

And, using the time-reversal property,

(𝑎)𝑛𝑢(−𝑛)
𝑍
↔

1

1−𝑎−1𝑧
 ROC |𝑧| < 𝑎

Finally, using the derivative property

−𝑧
𝑑

𝑑𝑧

1

1−𝑎−1𝑧
= −

𝑎−1𝑧

 (1−𝑎−1𝑧)2
 ROC |𝑧| < 𝑎

Example 6.5: Find the z-transform of 𝑥(𝑛) = 𝑢(𝑛) − (0.5)𝑛𝑢(𝑛) .

Solution:

Applying the linearity of the z-transform, we have

Substituting these results into X(z) leads to the final solution,

Example 6.5: Find the z-transform of the following sequence:

Solution:

We first use the shift theorem to have

6.2 Partial Fraction Expansion

For z-transforms that are rational functions of z, a simple and straightforward

approach to find the inverse z-transform is to perform a partial fraction expansion of

𝑋(𝑧) .

Example 6.6: Find the inverse z-transform of the following 𝑋(𝑧) .

𝑋(𝑧) =
4 −

7
4
𝑧−1 +

1
4
𝑧−2

1 −
3
4
𝑧−1 +

1
8
𝑧−2

=
4 −

7
4
𝑧−1 +

1
4
𝑧−2

(1 −
1
2
𝑧−1)(1 −

1
4
𝑧−1)

With a region of convergence |𝑧| >
1

2
 .

Solution: the partial fraction expansion has the form

𝑋(𝑧) = 𝐶 +
𝐴1

(1 −
1
2
𝑧−1)

+
𝐴2

(1 −
1
4
𝑧−1)

The constant C is found by long division:

Therefore, 𝐶 = 2 and we may write 𝑋(𝑧) as follows:

𝑋(𝑧) = 2 +
2 −

1
4
𝑧−1

(1 −
1
2
𝑧−1)(1 −

1
4
𝑧−1)

Next, for the coefficients 𝐴1 and 𝐴2 we have

𝐴1 = [1 −
1

2
𝑧−1𝑋(𝑧)]

𝑧−1=2
=
4 −

7
4
𝑧−1 +

1
4
𝑧−2

(1 −
1
4
𝑧−1)

|

𝑧−1=𝟐

= 𝟑

𝐴2 = [1 −
1

4
𝑧−1𝑋(𝑧)]

𝑧−1=4
=
4 −

7
4
𝑧−1 +

1
4
𝑧−2

(1 −
1
2
𝑧−1)

|

𝑧−1=4

= −1

Thus, the complete partial fraction expansion becomes

𝑋(𝑧) = 2 +
3

(1 −
1
2
𝑧−1)

−
1

(1 −
1
4
𝑧−1)

Finally, because the region of convergence is the exterior of the circle |𝑧| >
1

2
 , 𝑥(𝑛)

is the right-sided sequence

𝑥(𝑛) = 2𝛿(𝑛) + 3 (
1

2
)
𝑛

𝑢(𝑛) − (
1

4
)
𝑛

𝑢(𝑛)

Example 6.6: Find the inverse z-transform of the following 𝑋(𝑧) .

Solution:

7. The Discrete Fourier Transform (DFT)

The DFT is an important decomposition for sequences that are finite in length. The

DFT is a mapping form a sequence, 𝑥(𝑛) , to another sequence, 𝑋(𝑘) ,

𝑥(𝑛)
𝐷𝐹𝑇
⇔ 𝑋(𝑘)

The sequence 𝑋(𝑘) is called the N-point DFT of 𝑥(𝑛) .

 (7.1)

and 𝑥(𝑛) may be expanded as follows

𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)𝑒𝑗2𝜋𝑛𝑘/𝑁
𝑁−1

𝑘=0

 0 ≤ 𝑛 < 𝑁 (7.2)

A notational simplification that is often used for the DFT is to define

 𝑊𝑁 = 𝑒
−𝑗2𝜋/𝑁

For the complex exponential and write the DFT pair as follows:

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

 0 ≤ 𝑘 < 𝑁 (7.3)

 (7.4)

Example 7.1: Find the DFT for the sequence 𝑥 = [1 3 5 2] .

Solution: given that 𝑁 = 4.

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

 0 ≤ 𝑘 < 𝑁

𝑋(𝑘) = ∑𝑥(𝑛)𝑊4
𝑛×𝑘

3

𝑛=0

 0 ≤ 𝑘 < 4

 𝑤ℎ𝑒𝑛 𝑘 = 0

𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)𝑊𝑁

−𝑛𝑘

𝑁−1

𝑘=0

 0 ≤ 𝑛 < 𝑁

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑗2𝜋𝑛𝑘/𝑁
𝑁−1

𝑛=0

 0 ≤ 𝑘 < 𝑁

𝑋(0) = ∑𝑥(𝑛)𝑊4
𝑛×0

3

𝑛=0

= 1.𝑊4
0∗0 + 3.𝑊4

1∗0 + 5.𝑊4
2∗0 + 2.𝑊4

3∗0

= 1.𝑊4
0 + 3.𝑊4

0 + 5.𝑊4
0 + 2.𝑊4

0

= 1𝑒−𝑗
0∗2𝜋
4 + 3𝑒−𝑗

0∗2𝜋
4 + 5𝑒−𝑗

0∗2𝜋
4 + 2𝑒−𝑗

0∗2𝜋
4

= 1[cos 0−jsin 0] + 3[cos0−jsin 0] + 5[cos 0−jsin 𝜋0] + 2[cos 0−jsin 0]

= 1[1 − 0] + 3[1 − 0] + 5[1 − 0] + 2[1 − 0] = 11

𝑋(0) = 11

𝑤ℎ𝑒𝑛 𝑘 = 1

𝑋(1) = ∑𝑥(𝑛)𝑊4
𝑛×1

3

𝑛=0

= 1.𝑊4
0∗1 + 3.𝑊4

1∗1 + 5.𝑊4
2∗1 + 2.𝑊4

3∗1

= 1.𝑊4
0 + 3.𝑊4

1 + 5.𝑊4
2 + 2.𝑊4

3

= 1𝑒−𝑗0 + 3𝑒−𝑗
1∗2𝜋
4 + 5𝑒−𝑗

2∗2𝜋
4 + 2𝑒−𝑗

3∗2𝜋
4

= 1𝑒−𝑗0 + 3𝑒−𝑗
2𝜋
4 + 5𝑒−𝑗

4𝜋
4 + 2𝑒−𝑗

6𝜋
4

= 1𝑒−𝑗0 + 3𝑒−𝑗
𝜋
2 + 5𝑒−𝑗𝜋 + 2𝑒−𝑗

3𝜋
2

= 1[cos 0−jsin 0] + 3 [cos
𝜋

2
−jsin

𝜋

2
] + 5[cos𝜋 −jsin 𝜋] + 2 [cos

3𝜋

2
−jsin

3𝜋

2
]

= 1[1 − 0] + 3[0 − 𝑗] + 5[(−1) − 0] + 2[0 − (−𝑗)] = 1 − 3𝑗 − 5 + 2𝑗 = −4 − 𝑗

𝑤ℎ𝑒𝑛 𝑘 = 2

𝑋(2) = ∑𝑥(𝑛)𝑊4
𝑛×2

3

𝑛=0

= 1.𝑊4
0∗2 + 3.𝑊4

1∗2 + 5.𝑊4
2∗2 + 2.𝑊4

3∗2

= 1.𝑊4
0 + 3.𝑊4

2 + 5.𝑊4
4 + 2.𝑊4

6 = 1 + 3

= 1𝑒−𝑗0 + 3𝑒−𝑗
2∗2𝜋
4 + 5𝑒−𝑗

4∗2𝜋
4 + 2𝑒−𝑗

6∗2𝜋
4

= 1𝑒−𝑗0 + 3𝑒−𝑗
4𝜋
4 + 5𝑒−𝑗

8𝜋
4 + 2𝑒−𝑗

12𝜋
4

= 1𝑒−𝑗0 + 3𝑒−𝑗𝜋 + 5𝑒−𝑗2𝜋 + 2𝑒−𝑗3𝜋

= 1[cos 0−jsin 0] + 3[cos𝜋−jsin 𝜋] + 5[cos 2𝜋−jsin 2𝜋] + 2[cos 3𝜋−jsin 3𝜋]

= 1[1 − 0] + 3[(−1) − 0] + 5[1 − 0] + 2[(−1) + 0] = 1 − 3 + 5 − 2 = 1

𝑋(2) = 1

𝑤ℎ𝑒𝑛 𝑘 = 3

𝑋(3) = ∑𝑥(𝑛)𝑊4
𝑛×3

3

𝑛=0

= 1.𝑊4
0∗3 + 3.𝑊4

1∗3 + 5.𝑊4
2∗3 + 2.𝑊4

3∗3

= 1.𝑊4
0 + 3.𝑊4

3 + 5.𝑊4
6 + 2.𝑊4

9

= 1𝑒−𝑗0 + 3𝑒−𝑗
3∗2𝜋
4 + 5𝑒−𝑗

6∗2𝜋
4 + 2𝑒−𝑗

9∗2𝜋
4

= 1𝑒−𝑗0 + 3𝑒−𝑗
6𝜋
4 + 5𝑒−𝑗

12𝜋
4 + 2𝑒−𝑗

18𝜋
4

= 1𝑒−𝑗0 + 3𝑒−𝑗
3𝜋
2 + 5𝑒−𝑗3𝜋 + 2𝑒−𝑗

9𝜋
2

= 1[cos0−jsin 0] + 3 [cos
3𝜋

2
−jsin

3𝜋

2
] + 5[cos3𝜋−jsin 3𝜋]

+ 2 [cos
9𝜋

2
−jsin

9𝜋

2
]

= 1[1 − 0] + 3[0 − (−1𝑗)] + 5[(−1) − 0] + 2[0 − 1𝑗] = 1 + 3𝑗 − 5 − 2𝑗

= −4 + 𝑗

7.1 DFT Properties

➢ Linearity

If 𝑥1(𝑛) and 𝑥2(𝑛) have N-point DFTs 𝑋1(𝑘) and 𝑋2(𝑘) , respectively,

𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛)
𝐷𝐹𝑇
⇔ 𝑎𝑋1(𝑘) + 𝑏𝑋2(𝑘) (7.5)

Note: if 𝑥1(𝑛) and 𝑥2(𝑛) have different lengths, the shorter sequence must be added

with zeros in order to make it the same length as the longer sequence.

➢ Symmetry

If 𝑥(𝑛) is real-valued, 𝑋(𝑘) is conjugate symmetric,

𝑋(𝑘) = 𝑋∗(−𝑘) = 𝑋∗((𝑁 − 𝑘))𝑁 (7.6)

And if 𝑥(𝑛) is imaginary, 𝑋(𝑘) is conjugate antisymmetrice,

𝑋(𝑘) = −𝑋∗(−𝑘) = −𝑋∗((𝑁 − 𝑘))𝑁 (7.7)

Where ((𝑖))𝑁 or (𝑖 𝑚𝑜𝑑 𝑁) are taken to mean "𝑖 𝑚𝑜𝑑𝑢𝑙𝑜 𝑁" . For example,

((13))8 = 5 and ((−6))8 = 2 .

➢ Circular Shift

𝑥((𝑛 − 𝑛𝑜))𝑁ℛ𝑁
(𝑛) = 𝑥̃(𝑛 − 𝑛𝑜)ℛ𝑁(𝑛)

Where 𝑛𝑜 is the amount of the shift and ℛ𝑁(𝑛) is a rectangular window:

ℛ𝑁(𝑛) = {
1 0 ≤ 𝑛 < 𝑁
0 𝑒𝑙𝑠𝑒

Where 𝑥̃(𝑛) is the periodic sequence which may be formed from 𝑥(𝑛) as follows:

𝑥̃(𝑛) = ∑ 𝑥(𝑛 + 𝑘𝑁)

∞

𝑘=−∞

A circular shift to the right by 𝑛𝑜 corresponds to a rotation of the circle 𝑛𝑜 positions

in a clockwise direction.

 Eight-point sequence. Circular Shift by two

(a) A discrete-time signal of length N=4. (b) Circular shift by one.

(c) Circular shift by two. (d) Circular shift by three.

If a sequence is circularly shifted, the DFT is multiplied by a complex exponential,

𝑥((𝑛 − 𝑛𝑜))𝑁ℛ𝑁
(𝑛)

𝐷𝐹𝑇
⇔ 𝑊𝑁

𝑛𝑜𝑘𝑋(𝑘) (7.8)

Similarly, with a circular shift of the DFT, 𝑋(𝑘 − 𝑘𝑜) , the sequence is multiplied

by a complex exponential,

𝑊𝑁
𝑛𝑘𝑜𝑥(𝑛)

𝐷𝐹𝑇
⇔ 𝑋((𝑘 + 𝑘𝑜))𝑁 (7.9)

8. Radix-2Fast Fourier Transform (FFT)

Because 𝑥(𝑛) may be either real or complex, evaluating 𝑋(𝑘) (see Eqn.(7.3))

requires on the order of 𝑁 complex multiplications and 𝑁 complex additions for each

value of 𝑘.therefore , because there are 𝑁 value of 𝑁, computing an 𝑁 -point DFT

requires 𝑁2 complex multiplications and additions. Suppose that the length of 𝑥(𝑛)

is even (i.e., 𝑁 is divisible by 2). If 𝑥(𝑛) is decimated into two sequences of length of

𝑁/2 , computing the 𝑁/2 -point DFT of each of these sequences requires

approximately (𝑁/2)2 multiplications and the same number of additions. Thus, the

two DFTs require 2(𝑁/2)2 =
1

2
𝑁2 multiplies and adds. Therefore, if it is possible to

find the 𝑁-point DFT of 𝑥(𝑛) from these two 𝑁/2-point DFTs in fewer than
1

2
𝑁2

operations, a savings has been realized.

8.1 Decimation-in-Time FFT

Let 𝑥(𝑛) be a sequence of length 𝑁 = 2𝑣, and suppose that 𝑥(𝑛) is split (decimated)

into two subsequences, each of length 𝑁/2 . As illustrated in Fig.(8.1), the first

sequence, 𝑔(𝑛) is formed from the even-index terms,

𝑔(𝑛) = 𝑥(2𝑛) 𝑛 = 0,1,…
𝑁

2
− 1

and the second. ℎ(𝑛), is formed from the odd-index terms,

ℎ(𝑛) = 𝑥(2𝑛 + 1) 𝑛 = 0,1,…
𝑁

2
− 1

In terms of these sequence, the 𝑁-point DFT of 𝑥(𝑛) is

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑛𝑘 =

𝑁−1

𝑛=0

∑ 𝑥(𝑛)𝑊𝑁
𝑛𝑘

𝑛 𝑒𝑣𝑒𝑛

+ ∑ 𝑥(𝑛)𝑊𝑁
𝑛𝑘

𝑛 𝑜𝑑𝑑

= ∑𝑔(𝑙)𝑊𝑁
2𝑙𝑘

𝑁
2
−1

𝑙=0

+∑ ℎ(𝑙)𝑊𝑁
(2𝑙+1)𝑘

𝑁
2
−1

𝑙=0

 𝑘 = 0,1,… ,𝑁 − 1 (8.1)

Fig.(8.1)

Because 𝑊𝑁
2𝑙𝑘 = 𝑊𝑁/2

𝑙𝑘 , Eqn.(8.1) may be written as

𝑋(𝑘) = ∑ 𝑔(𝑙)𝑊𝑁/2
𝑙𝑘

𝑁
2
−1

𝑙=0

+∑ ℎ(𝑙)𝑊𝑁/2
𝑙𝑘 𝑊𝑁

𝑘

𝑁
2
−1

𝑙=0

 𝑘 = 0,1,… , 𝑁 − 1

𝑋(𝑘) = ∑ 𝑔(𝑙)𝑊𝑁/2
𝑙𝑘

𝑁
2
−1

𝑙=0

+𝑊𝑁
𝑘∑ℎ(𝑙)𝑊𝑁/2

𝑙𝑘

𝑁
2
−1

𝑙=0

 𝑘 = 0,1,… ,𝑁 − 1

Note that the first term is the 𝑁/2 –point DFT of 𝑔(𝑛) , and the second is the 𝑁/2 –

point DFT of ℎ(𝑛) :

𝑋(𝑘) = 𝐺(𝑘) +𝑊𝑁
𝑘𝐻(𝑘) 𝑘 = 0,1,… , 𝑁 − 1 (8.2)

Although the 𝑁/2 -point DFTs of 𝑔(𝑛) and ℎ(𝑛) are sequences of length 𝑁/2 , the

periodicity of the complex exponentials allows us to write

𝐺(𝑘) = 𝐺(𝑘 +
𝑁

2
) 𝐻(𝑘) = 𝐻(𝑘 +

𝑁

2
)

Therefore,𝑋(𝑘) may be computed from the 𝑁/2 –point DFTs 𝐺(𝑘) and 𝐻(𝑘) . Note

that because

𝑊𝑁
𝑘+𝑁/2

= 𝑊𝑁
𝑘𝑊𝑁

𝑁/2
= −𝑊𝑁

𝑘

Then

𝑊𝑁
𝑘+𝑁/2

𝐻 (𝑘 +
𝑁

2
) = −𝑊𝑁

𝑘𝐻(𝑘)

And it is only necessary to form the products 𝑊𝑁
𝑘𝐻(𝑘) for 𝑘 = 0,1,… ,𝑁/2 − 1 . A

block diagram showing the computations that are necessary for the first stage of an

eight-point decimation-in-time FFT is shown in Fig.(8.2).

Fig.(8.2)

If 𝑁/2 is even, 𝑔(𝑛) and ℎ(𝑛) may again be decimated. For example, 𝐺(𝑘) may be

evaluated as follows:

𝐺(𝑘) = ∑ 𝑔(𝑛)𝑊𝑁
2

𝑛𝑘

𝑁
2
−1

𝑛=0

= ∑ 𝑔(𝑛)𝑊𝑁/2
𝑛𝑘

𝑁
2
−1

𝑛 𝑒𝑣𝑒𝑛

+ ∑ 𝑔(𝑛)𝑊𝑁/2
𝑛𝑘

𝑁
2
−1

𝑛 𝑜𝑑𝑑

As before, this leads to

𝐺(𝑘) = ∑ 𝑔(2𝑛)𝑊𝑁/4
𝑛𝑘

𝑁
4
−1

𝑛=0

+𝑊𝑁/2
𝑛𝑘 ∑𝑔(2𝑛 + 1)𝑊𝑁/4

𝑛𝑘

𝑁
4
−1

𝑛=0

Where the first term is the 𝑁/4 –point DFT of the even samples of 𝑔(𝑛) and the

second is the 𝑁/4 –point DFT of the odd samples. A block diagram illustrating this

decomposition is shown in Fig.(8.3). If the 𝑁 is a power of 2, the decimation may be

continued until there are only two-point DFTs of the form shown in Fig. (8.4);

Fig.(8.3)

The basic computational unit of FFT, shown in Fig.(8.4a), is called a butterfly. This

structure may be simplified by factoring out a term 𝑊𝑁
𝑟 from the lower branch as

illustrated in Fig.(8.4b). The factor that remains is 𝑊𝑁
𝑁/2

= −1 . .A complete eight-

point radix-2 decimation-in-time FFT is shown in Fig.(8.5).

(a) (b)

Fig.(8.4)

Fig.(8.5): Cooley-Tukey FFT decimation in time.

Example 8.1: Find the DFT of the following sequence 𝑥 using the FFT algorithm.

𝑥 = [1,−1,−1,−1,1,1,1,−1]

Solution: the scale factors 𝑊8
𝑘(𝑘 = 0,1,… ,𝑁/2 − 1) are easily calculated as

follows:

𝑊8
0 = 1,𝑊8

1 = 𝑒−𝑗2𝜋/8 =
1

√2
− 𝑗

1

√2
 ,𝑊8

2 = 𝑒−𝑗4𝜋/8 = −𝑗 ,𝑊8
3 = 𝑒−𝑗6𝜋/8

= −
1

√2
− 𝑗

1

√2

Example 8.2: Consider the sequence

𝑥(𝑛) = 𝛿(𝑛) + 2𝛿(𝑛 − 2) + 𝛿(𝑛 − 3)

(a) Find the four-point (𝑁 = 4) DFT of 𝑥(𝑛) .

(b) Confirm your result in (a) using the FFT algorithm

Solution:

(a) 𝑥(𝑛) = 𝛿(𝑛) + 2𝛿(𝑛 − 2) + 𝛿(𝑛 − 3)

𝑥(𝑛) = [1 0 2 1]

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑗2𝜋𝑛𝑘/𝑁
𝑁−1

𝑛=0

= ∑𝑥(𝑛)𝑒−𝑗2𝜋𝑛𝑘/𝑁
3

𝑛=0

𝑋(0) = 1 + 0 + 2 + 1 = 4

𝑋(1) = ∑𝑥(𝑛)𝑊4
𝑛×1

3

𝑛=0

= 1.𝑊4
0∗1 + 0.𝑊4

1∗1 + 2.𝑊4
2∗1 + 1.𝑊4

3∗1

= 1.𝑊4
0 + 0.𝑊4

1 + 2.𝑊4
2 + 1.𝑊4

3

𝑋(1) = 1𝑒−𝑗0 + 0𝑒−𝑗
1∗2𝜋
4 + 2𝑒−𝑗

2∗2𝜋
4 + 1𝑒−𝑗

3∗2𝜋
4

= 1𝑒−𝑗0 + 0𝑒−𝑗
2𝜋
4 + 2𝑒−𝑗

4𝜋
4 + 1𝑒−𝑗

6𝜋
4

= 1𝑒−𝑗0 + 0𝑒−𝑗
𝜋
2 + 2𝑒−𝑗𝜋 + 1𝑒−𝑗

3𝜋
2

= 1[cos 0−jsin 0] + 0 [cos
𝜋

2
−jsin

𝜋

2
] + 2[cos𝜋 −jsin 𝜋] + 1 [cos

3𝜋

2
−jsin

3𝜋

2
]

= 1[1 − 0] + 0[0 − 𝑗] + 2[(−1) − 0] + 1[0 − (−𝑗)] = 1 − 2 + 𝑗 = −1 + 𝑗

𝑋(2) = ∑𝑥(𝑛)𝑊4
𝑛×2

3

𝑛=0

= 1.𝑊4
0∗2 + 0.𝑊4

1∗2 + 2.𝑊4
2∗2 + 1.𝑊4

3∗2

= 1.𝑊4
0 + 0.𝑊4

2 + 2.𝑊4
4 + 1.𝑊4

6 = 1 + 3

= 1𝑒−𝑗0 + 0𝑒−𝑗
2∗2𝜋
4 + 2𝑒−𝑗

4∗2𝜋
4 + 1𝑒−𝑗

6∗2𝜋
4

= 1𝑒−𝑗0 + 0𝑒−𝑗
4𝜋
4 + 2𝑒−𝑗

8𝜋
4 + 1𝑒−𝑗

12𝜋
4

= 1𝑒−𝑗0 + 0𝑒−𝑗𝜋 + 2𝑒−𝑗2𝜋 + 1𝑒−𝑗3𝜋

= 1[cos 0−jsin 0] + 0[cos𝜋−jsin 𝜋] + 2[cos 2𝜋−jsin 2𝜋] + 1[cos 3𝜋−jsin 3𝜋]

= 1[1 − 0] + 0[(−1) − 0] + 2[1 − 0] + 1[(−1) + 0] = 1 + 0 + 2 − 1 = 2

𝑋(3) = ∑𝑥(𝑛)𝑊4
𝑛×3

3

𝑛=0

= 1.𝑊4
0∗3 + 0.𝑊4

1∗3 + 2.𝑊4
2∗3 + 1.𝑊4

3∗3

= 1.𝑊4
0 + 0.𝑊4

3 + 2.𝑊4
6 + 1.𝑊4

9 =

= 1𝑒−𝑗0 + 0𝑒−𝑗
3∗2𝜋
4 + 2𝑒−𝑗

6∗2𝜋
4 + 1𝑒−𝑗

9∗2𝜋
4

= 1𝑒−𝑗0 + 0𝑒−𝑗
6𝜋
4 + 2𝑒−𝑗

12𝜋
4 + 1𝑒−𝑗

18𝜋
4

= 1𝑒−𝑗0 + 0𝑒−𝑗
3𝜋
2 + 2𝑒−𝑗3𝜋 + 1𝑒−𝑗

9𝜋
2

= 1[cos0−jsin 0] + 0 [cos
3𝜋

2
−jsin

3𝜋

2
] + 2[cos3𝜋−jsin 3𝜋]

+ 1 [cos
9𝜋

2
−jsin

9𝜋

2
]

= 1[1 − 0] + 0[0 − (−1𝑗)] + 2[(−1) − 0] + 1[0 − 1𝑗] = 1 + 0 − 2 − 𝑗 = −1 − 𝑗

𝑋(𝑘) = [4 − 1 + 𝑗1 2 − 1 − 𝑗1]

(b) 𝑊4
0 = 1,𝑊4

1 = −𝑗

8.2 Complexity of FFT

Computing an 𝑁-point DFT using a radix-2 decimation-in-time FFT is much more

efficient than calculation the DFT directly. For example, if 𝑁 = 2𝑣 , there are

log2𝑁 = 𝑣 stages of computation. Because each stage requires 𝑁/2 complex

multiplies by the factors 𝑊𝑁
𝑟 and 𝑁 complex additions, there are a total of

1

2
𝑁 log2𝑁

complex multiplications and 𝑁 log2𝑁 complex additions.

8.3 Inverse Fast Fourier-Transform(IFFT)

It is possible to calculate the IFFT using FFT algorithm:

𝑋(𝑛) =
1

𝑁
∑ 𝑋(𝑘)𝑊𝑁

−𝑛𝑘

𝑁−1

𝑘=0

=
1

𝑁
𝑗∑−𝑗𝑋(𝑘)𝑊𝑁

−𝑛𝑘

𝑁−1

𝑘=0

=
1

𝑁
𝑗 [∑ 𝑗𝑋∗(𝑘)𝑊𝑁

𝑛𝑘

𝑁−1

𝑘=0

]

∗

=
1

𝑁
𝑗[𝐹𝐹𝑇(𝑗 𝑋∗(𝑘))]∗

The algorithm can be summarized by the following steps:

1. FFT of sequence 𝑗 𝑋∗(𝑘) , i.e. swap real and imaginary parts.

2. Swap real and imaginary parts of result.

3. Normalize 1/𝑁.

Example 8.3: Find the IFFT the sequence resulted from example 8.2.

𝑋(𝑘) = [4,−1 + 𝑗, 2, −1 − 𝑗]

Solution:

𝑋̅(𝑘) = 𝑗𝑋∗(𝑘) = [4𝑗, 1 − 𝑗, 2𝑗, −1 − 𝑗]

9.Convolution

The relationship between the input to a linear shift-invariant system, 𝑥(𝑛) , and the

output, 𝑦(𝑛) , is given by the convolution sum

𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛) = ∑ 𝑥(𝑘)ℎ(𝑛 − 𝑘)

∞

𝑘=−∞

 (9.1)

9.1 Convolution Properties

➢ Commutative Property

𝑥(𝑛) ∗ ℎ(𝑛) = ℎ(𝑛) ∗ 𝑥(𝑛)

➢ Associative Property

{𝑥(𝑛) ∗ ℎ1(𝑛)} ∗ ℎ2(n) = 𝑥(𝑛) ∗ {ℎ1(𝑛) ∗ ℎ2(n)}

➢ Distributive Property

𝑥(𝑛) ∗ {ℎ1(𝑛) + ℎ2(𝑛)} = 𝑥(𝑛) ∗ ℎ1(𝑛) + 𝑥(𝑛) ∗ ℎ2(𝑛)

9.2 Performing Convolution

1. Direct Evaluation

Let us perform the convolution of the two signals -: 9.1 Example

𝑥(𝑛) = 𝑎𝑛𝑢(𝑛) = {
𝑎𝑛 𝑛 ≥ 0
0 𝑛 < 0

 and ℎ(𝑛) = 𝑢(𝑛)

𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛) = ∑ 𝑥(𝑘)ℎ(𝑛 − 𝑘) =

∞

𝑘=−∞

∑ 𝑎𝑛𝑢(𝑘)𝑢(𝑛 − 𝑘)

∞

𝑘=−∞

Because 𝑢(𝑘)is equal to zero for 𝑘 < 0 and 𝑢(𝑛 − 𝑘)is equal to zero for 𝑘 > 𝑛,

when 𝑛 < 0, there are no nonzero terms in the sum and 𝑦(𝑛) = 0. On the other

hand, if 𝑛 ≥ 0 ,

𝑦(𝑛) = ∑𝑎𝑘
𝑛

𝑘=0

=
1 − 𝑎𝑛+1

1 − 𝑎

Therefore form table above , 𝑦(𝑛) = ∑ 𝑎𝑘𝑛
𝑘=0 =

1−𝑎𝑛+1

1−𝑎
𝑢(𝑛)

2. Graphical Approach

Convolutions may also be performed graphically. The steps involved in using the

graphical approach are as follows:

1. Plot both sequences, 𝑥(𝑘) and ℎ(𝑘) ,as functions of 𝑘.

2. Choose one of the sequences, say ℎ(𝑘) , and time-reverse it to form the

sequence ℎ(−𝑘).

3. Shift the time-reversed sequences by 𝑛.

4. Multiply the two sequences 𝑥(𝑘) and ℎ(𝑛 − 𝑘) and sum the product for all values

of 𝑘. The resulting value will be equal to 𝑦(𝑛) . This process is repeated for all

possible shifts, 𝑛 .

If 𝑥(𝑛) is of length 𝐿1 and ℎ(𝑛) is of length 𝐿2 , 𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛) will be of

length

𝐿 = 𝐿1 + 𝐿2 − 1

Furthermore, if

{𝑥(𝑛); 𝑛𝑥𝑏 ≤ 𝑛 ≤ 𝑛𝑥𝑒} and {ℎ(𝑛); 𝑛ℎ𝑏 ≤ 𝑛 ≤ 𝑛ℎ𝑒} , then

{𝑦(𝑛); 𝑛𝑦𝑏 ≤ 𝑛 ≤ 𝑛𝑦𝑒} where 𝑛𝑦𝑏 = 𝑛𝑥𝑏 + 𝑛ℎ𝑏 and 𝑛𝑦𝑒 = 𝑛𝑥𝑒 + 𝑛ℎ𝑒

Example 9.2 : To illustrate the graphical approach to convolution, let us evaluate

𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛) Where 𝑥(𝑛) and ℎ(𝑛) are the sequences shown in Fig.9-1 (a)

and (b) , respectively. To perform this convolution, we follow the steps listed above:

1. Because 𝑥(𝑘) and ℎ(𝑘) are both plotted as a function of 𝑘 in Fig.9-1 (a) and (b),

we next choose one of the sequences to reverse in time. In this example, we time –

reverse ℎ(𝑘), which is shown in Fig.9-1 (c).

2. Forming the product, 𝑥(𝑘)ℎ(−𝑘) , and summing over 𝑘 , we find that 𝑦(0) = 1.

3. Shift ℎ(𝑘) to the right by one results in the sequence ℎ(1 − 𝑘) shown in Fig.9-

1(d). Forming the product, 𝑥(𝑘)ℎ(1 − 𝑘) , and summing over 𝑘 , we find that

𝑦(1) = 3.

4. Shift ℎ(1 − 𝑘) to the right again gives the sequence ℎ(2 − 𝑘) shown in Fig.9-

1(e). Forming the product, 𝑥(𝑘)ℎ(2 − 𝑘) , and summing over 𝑘 , we find that

𝑦(2) = 6.

5. Continuing in this manner, we find that 𝑦(3) = 5, 𝑦(4) = 3 , and 𝑦(𝑛) = 0 for

𝑛 > 4.

6. We next take ℎ(−𝑘) and shift it to the left by one as shown in Fig. 9-1(f). Because

the product, 𝑥(𝑘)ℎ(−1 − 𝑘), is equal to zero for all 𝑘, we find that 𝑦(−1) = 0.

In fact 𝑦(𝑛) = 0 for all 𝑛 < 0. figure 9-1(g) shows the convolution for all 𝑛.

Fig.(9.1). The graphical approach to convolution.

3. Linear Convolution Using The DFT

The DFT provides a convenient way to perform convolutions with having to

evaluate the convolution sum. Specifically, if ℎ(𝑛) is 𝑁1 points long and 𝑥(𝑛) is 𝑁2

points long. ℎ(𝑛) may be linearly convolved with 𝑥(𝑛) as follows:

1. Pad the sequences ℎ(𝑛) and 𝑥(𝑛) with zeros so that they are of length

𝑁 ≥ 𝑁1 +𝑁2 − 1.

2. Find the N-point DFTs(use FFT to reduce complexity) of ℎ(𝑛) and 𝑥(𝑛).

3. Multiply the DFTs to form the product 𝑌(𝑘) = 𝐻(𝑘)𝑋(𝑘).

4. Find the inverse DFT of 𝑌(𝑘).

Example 9.3 : let us consider the sequences 𝑥(𝑛) = [1̅, 2,3,1] ; ℎ(𝑛) =

[4̅, 3,2,1] (note: the dash over the number refers to the index 𝑛 = 0) .

Solution: 𝑁1 = 𝑁2 = 4 ,hance 𝑁 ≥ 4 + 4 − 1 = 7. To utilize the benefit of FFT,

let 𝑁 = 8, and 𝑥𝑛 = [1̅, 2,3,1,0,0,0,0] and ℎ𝑛 = [4̅, 3,2,1,0,0,0,0] .

Then

𝑋(𝑘) = [7,1.7071 − 5.1213𝑗, −2 − 1𝑗, 0.2929 + 0.8787𝑗, 1,0.2929

− 0.8787𝑗, −2 + 1𝑗, 1.7071 + 5.1213𝑗]

and

𝐻(𝑘) = [10,5.4142 − 4.8284𝑗, 2 − 2𝑗, 2.5858 − 0.8284𝑗, 2,2.5858 + 0.8284𝑗, 2

+ 2𝑗, 5.4142 + 4.8284𝑗]

𝑌(𝑘) = 𝐻(𝑘)𝑋(𝑘)

= [70,−15.4853 − 35.9706𝑗, −6 + 2𝑗, 1.4853 + 2.0294𝑗, 2,1.4853

− 2.0294𝑗, −6 − 2𝑗,−15.4853 + 35.9706𝑗]

Applying inverse DFT to 𝑌(𝑘) gives

𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)𝑊𝑁

−𝑛𝑘

𝑁−1

𝑘=0

 0 ≤ 𝑛 < 𝑁

𝑦𝑛 = [4 ,11,20,18,11,5,1,0]

Or

𝑦(𝑛) = 4𝛿(𝑛) + 11𝛿(𝑛 − 1) + 20𝛿(𝑛 − 2) + 18𝛿(𝑛 − 3) + 11𝛿(𝑛 − 4)

+ 5𝛿(𝑛 − 5) + 𝛿(𝑛 − 6)

CHAPTER TWO:DIGITAL FILTER DESIGN

1.Structures for IIR Systems

1.1 Direct Form I

The input 𝑥(𝑛) and output 𝑦(𝑛) of a causal (Infinite Impulse Response) IIR filter

with a rational system function

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

∑ 𝑏𝑘𝑧
−𝑘𝑀

𝑘=0

1 + ∑ 𝑎𝑘𝑧
−𝑘𝑁

𝑘=1

 (1.1)

Is described by the linear constant coefficient difference equation

𝑦(𝑛) +∑𝑎𝑘 𝑦(𝑛 − 𝑘) = ∑𝑏𝑘 𝑥(𝑛 − 𝑘)

𝑀

𝑘=0

𝑁

𝑘=1

 (1.2)

or,

𝑦(𝑛) = ∑𝑏𝑘 𝑥(𝑛 − 𝑘) −

𝑀

𝑘=0

∑𝑎𝑘 𝑦(𝑛 − 𝑘)

𝑁

𝑘=1

 (1.3)

The block diagram of Fig.(1.1) is an explicit pictorial representation of Eq.(1.3).

More precisely, it represent the pair of difference equations

𝑣(𝑛) = ∑𝑏𝑘 𝑥(𝑛 − 𝑘)

𝑀

𝑘=0

 (1.4𝑎)

𝑦(𝑛) = 𝑣(𝑛) −∑𝑎𝑘 𝑦(𝑛 − 𝑘)

𝑁

𝑘=1

 (1.4𝑏)

Form Eqn.(1,1), Fig.(1.1) can be viewed as an implementation of 𝐻(𝑧) through the

decomposition

𝐻(𝑧) = 𝐻2(𝑧)𝐻1(𝑧) = (
1

1 + ∑ 𝑎𝑘 𝑧
−𝑘𝑁

𝑘=1

)(∑𝑏𝑘 𝑧
−𝑘

𝑀

𝑘=0

) (1.5)

Or, equivalently, through the pair of equations

𝑉(𝑧) = 𝐻1(𝑧)𝑋(𝑧) = (∑𝑏𝑘 𝑧
−𝑘

𝑀

𝑘=0

)𝑋(𝑧) (1.6𝑎)

𝑌(𝑧) = 𝐻2(𝑧)𝑉(𝑧) = (
1

1 + ∑ 𝑎𝑘 𝑧
−𝑘𝑁

𝑘=1

)𝑉(𝑧) (1.6𝑏)

Figure (1.1) can be viewed as a cascade of two systems, the first representing the

computation of v(n) from x(n) and the second representing the computation of y(n)

from v(n) .

Fig.(1.1)

1.2 Direct Form II

Since each of the two systems is a linear time-invariant system, the order in which

the two systems are cascaded can be reversed, as shown in Fig.(1.2), without

affecting the overall system function. For convenience, we have assumed that 𝑀 =

𝑁.

𝐻(𝑧) = 𝐻1(𝑧)𝐻2(𝑧) = (∑𝑏𝑘 𝑧
−𝑘

𝑀

𝑘=0

)(
1

1 + ∑ 𝑎𝑘 𝑧
−𝑘𝑁

𝑘=1

) (1.7)

Or, equivalently, through the pair of equations

𝑊(𝑧) = 𝐻2(𝑧)𝑋(𝑧) = (
1

1 + ∑ 𝑎𝑘 𝑧
−𝑘𝑁

𝑘=1

)𝑋(𝑧) (1.8𝑎)

𝑌(𝑧) = 𝐻1(𝑧)𝑊(𝑧) = (∑𝑏𝑘 𝑧
−𝑘

𝑀

𝑘=0

)𝑊(𝑧) (1.8𝑏)

In the time domain, Fig.(1.1) and (1.2), equivalently, Eqn. (1.8) can be by the pair of

difference equations

𝑤(𝑛) = 𝑥(𝑛) −∑𝑎𝑘 𝑤(𝑛 − 𝑘)

𝑁

𝑘=1

 (1.9𝑎)

𝑦(𝑛) = ∑𝑏𝑘 𝑤(𝑛 − 𝑘)

𝑀

𝑘=0

 (1.9𝑏)

The systems in Fig.(1.1) and (1.2) each have a total of 𝑁 +𝑀 delay elements.

However, the block diagram of Fig.(1.2) can be redrawn by noting that exactly the

same single, 𝑤(𝑛) , is stored in the two chains of delay elements in the figure.

Consequently, the two can be collapsed into one chain, as indicated in Fig.(1.3).

The total number of delay elements in Fig.(1.3) is less than in either Fig.(1.1) or

Fig.(1.2). Specifically, the minimum number of delays required is, in general,

max (𝑁,𝑀).

Fig.(1.2)

Fig.(1.3)

Example 1.1: Draw the block diagram and the signal flow graph using direct form I

and II realization of the discrete-time system represented by the transfer function

𝐻(𝑧) =
1 + 2𝑧−1

1 − 1.5𝑧−1 + 0.9𝑧−2

Solution: Comparing this system function with Eqn.(1.1), we find 𝑏𝑜 = 1, 𝑏1 = 2,

𝑎1 = −1.5, and 𝑎2 = 0.9. Figure (1.4a) and (1.4b) depict a pictorial diagram for the

direct form I and II, respectively. Figure (1.4a) and (1.4b) can be rewritten applying

the signal flow graph, as shown in Fig.(1.5a) and (1.5b)

Fig.(1.4)

 Fig.(1.5)

1.3 Cascade Structure

The cascade structure is derived by factoring the numerator and denominator

polynomials of 𝐻(𝑧)

𝐻(𝑧) =
∑ 𝑏𝑘 𝑧

−𝑘𝑁
𝑘=0

1 + ∑ 𝑎𝑘 𝑧
−𝑘𝑀

𝑘=1

= 𝐴 ∏
1− 𝛽𝑘 𝑧

−𝑘

1 − 𝛼𝑘 𝑧
−𝑘

max (𝑁,𝑀)

𝑘=1

 (1.10)

This factorization corresponds to a cascade of first-order filters, each having one pole

and one zero. In general the coefficients 𝛼𝑘 and 𝛽𝑘 will be complex. However, if

ℎ(𝑛) is real, the roots of 𝐻(𝑧) will occur in complex conjugate pairs, and these

complex conjugate factors may be combined to form second-order factors with real

coefficients:

𝐻𝑘(𝑧) =
1 + 𝛽1𝑘 𝑧

−1 + 𝛽2𝑘 𝑧
−2

1+𝛼1𝑘 𝑧
−1 + 𝛼2𝑘 𝑧

−2

There is considerable flexibility in how a system may be implemented in cascade

form. For example, there are different pairings of the poles and zeros and different

ways in which the sections may be ordered. For example the system

𝐻(𝑧) =
1 + 2𝑧−1 + 𝑧−2

1 − 0.75𝑧−1 + 0.125 𝑧
−2

Has a direct form I and direct form II structures shown in Fig.(1.6)

Fig.(1.6)

Alternatively, to illustrate the cascade structure, we can use first-order systems by

expressing 𝐻(𝑧) as a product of first-order factors, as in

𝐻(𝑧) =
1 + 2𝑧−1 + 𝑧−2

1 − 0.75𝑧−1 + 0.125 𝑧
−2

𝐻(𝑧) =
(1 + 𝑧−1)(1 + 𝑧−1)

(1 − 0.5𝑧−1)(1 + 0.25 𝑧
−1)

Since all of the poles and zeros are real, a cascade structure with first-order sections

has real coefficients. If the poles and/or zeros were complex, only a second-order

section would have real coefficients. Fig.(1.7) show two equivalent cascade

structures.

Fig. (1.7): (a) Direct form I subsections. (b) Direct form II subsections.

1.4 Parallel Structure

An alternative to factoring 𝐻(𝑧) is to expand the system function using a partial

fraction expansion. For example, with

𝐻(𝑧) = 𝐴
∏ (1 − 𝛽𝑘 𝑧

−1)𝑀
𝑘=1

∏ (1 − 𝛼𝑘 𝑧
−1)𝑁

𝑘=1

If 𝑁 > 𝑀 and 𝛼𝑖 ≠ 𝛼𝑘 (the roots of the denominator polynomial are distinct), 𝐻(𝑧)

may be expanded as a sum of 𝑁 first-order factors as follows:

𝐻(𝑧) = ∑
𝐴𝑘

1 − 𝛼𝑘 𝑧
−1

𝑁

𝑘=1

Where the coefficient 𝐴𝑘 and 𝛼𝑘 are, in general, complex. This expansion

corresponds to a sum of 𝑁 first-order system functions and may be realized by

connecting these system in parallel. If ℎ(𝑛) is real, the poles 𝐻(𝑧) of will occur in

complex conjugate pairs, and these complex roots in the partial fraction expansion

may be combined to form second-order systems with real coefficients:

𝐻(𝑧) = ∑
𝛾0𝑘+𝛾1𝑘 𝑧

−1

1 + 𝛼1𝑘 𝑧
−1 + 𝛼2𝑘 𝑧

−2

𝑁𝑠

𝑘=1

Shown in Fig.(1.8) is a sixth-order filter implemented as a parallel connection of three

second-order direct form II systems. If N ≤ 𝑀 , the partial fraction expansion will

also contain a term of the form

𝑐0 + 𝑐1𝑧
−1 +⋯+ 𝑐𝑀−𝑁𝑧

−(𝑀−𝑁)

Which is an FIR filter that is placed in parallel with the other terms in the expansion

of 𝐻(𝑧) .

Fig.(1.8)

The parallel-form realization for the system with a second-order section is shown in

Fig.(1.9a).

𝐻(𝑧) =
1 + 2𝑧−1 + 𝑧−2

1 − 0.75𝑧−1 + 0.125 𝑧
−2
= 8 +

−7 + 8𝑧−1

1 − 0.75𝑧−1 + 0.125 𝑧
−2

Since all the poles are real, we can obtain an alternative parallel form realization by

expanding 𝐻(𝑧) as

𝐻(𝑧) = 8 +
18

1 − 0.5𝑧−1
−

25

1 − 0.25𝑧−1

The resulting parallel form with first-order sections is shown in Fig.(1.9b).

(a) (b)

Fig.(1.9)

2.Structures for FIR Systems

A causal FIR filter has a system function that is a polynomial in 𝑧−1 :

𝐻(𝑧) = ∑ℎ(𝑛)

𝑁

𝑛=0

𝑧−1

For an input 𝑥(𝑛), the output is

𝐻(𝑧) = ∑ℎ(𝑘)

𝑁

𝑘=0

𝑥(𝑛 − 𝑘)

2.1 Direct Form

The most common way to implement an FIR filter is in direct from using a tapped

delay line as shown in the figure below

2.2 Cascade Form

For a causal FIR filter, the system function may be factored into a product of first-

order factors,

𝐻(𝑧) = ∑ℎ(𝑛)

𝑁

𝑛=0

𝑧−𝑛 = 𝐴∏(1 − 𝛼𝑘 𝑧
−1)

𝑁

𝑘=1

Where 𝛼𝑘 for 𝑘 = 1,… , 𝑁 are the zeros of 𝐻(𝑧). If ℎ(𝑛) is real, the complex roots

of 𝐻(𝑧) occur in complex conjugate pairs, and these conjugate pairs may be

combined to form second-order factors with real coefficients,

𝐻(𝑧) = 𝐴∏[1 + 𝑏𝑘 (1)𝑧
−1 + 𝑏𝑘 (2)𝑧

−2]

𝑁𝑠

𝑘=1

𝐻(𝑧) may be implemented as a cascade of second-order FIR filter as illustrated in

Figure below.

3.IIR FILTER DESIGN

3.1 Butterworth Filters

A unity-gain Butterworth low-pass filter has a transfer function whose magnitude is

given by

|𝐻𝑛(𝑗Ω)| =
1

√1 + (
Ω
Ω𝑐
)
2𝑛

 (3.1)

Where 𝑛 is an integer that denoted the order of the filter.

1. The cutoff frequency is Ω𝑐 rad/s for all value of 𝑛.

2. If 𝑛 is large enough, the denominator is always close to unity when Ω < Ω𝑐

3. In the expression for |𝐻𝑛(𝑗Ω)| , the exponent of is always Ω/Ω𝑐 even.

To derive 𝐻(𝑠) , let us set Ω𝑐 = 1 𝑟𝑎𝑑/𝑠 (prototype filter), and note that

|𝐻𝑛(𝑗Ω)|
2 = 𝐻𝑛(𝑗Ω)𝐻𝑛(−𝑗Ω) =

1

1 + Ω2𝑛

But because 𝑠 = 𝑗Ω , we can write

|𝐻𝑛(𝑠)|
2 = 𝐻𝑛(𝑠)𝐻𝑛(−𝑠)

Thus,

|𝐻𝑛(𝑠)|
2 =

1

1 + (𝑠 𝑗⁄)2𝑛

The procedure for finding 𝐻𝑛(𝑠) for a given value of 𝑛 is as follows:

1. Find the roots of the polynomial

1 + (𝑠 𝑗⁄)2𝑛 = 0

or

𝑠2𝑛 = −1(𝑗)2𝑛 = (−1)𝑛+1

2. Assign the left-half plane roots to 𝐻𝑛(𝑠) and the right-half plane roots to

𝐻𝑛(−𝑠).

3. Combine terms in the denominator of 𝐻𝑛(𝑠)to form first-and second-order

factors.

𝐻𝑛(𝑠) can be written in the following form:

|𝐻𝑛(𝑠)|
2 =

1

∏ (𝑠 − 𝑠𝑘)𝐿𝐻𝑃
𝑝𝑜𝑙𝑒𝑠

=
1

𝐵𝑛(𝑠)
 (3.2)

For 𝑛 odd For 𝑛 even

Table (3.1): Butterworth Polynomials in Standard and Factored Forms

Example 3.1: Find the transfer function 𝐻𝑛(𝑠) for the normalized Butterworth filter

of order 2.

Solution: since 𝑛 = 2 we have the poles of 𝐻2(𝑠) 𝐻2(−𝑠) given by

Therefore, the four roots are

Using the left-half plane poles we can express the transfer function as follows

𝐻2(𝑠) =
1

(𝑠 − 𝑠2)(𝑠 − 𝑠3)

=
1

[𝑠 − (−0.707 − 0.707𝑗)][𝑠 − (−0.707 + 0.707𝑗)]

=
1

𝑠2 + √2𝑠 + 1

3.2 The Order of a Butterworth Filter

In the design of a low-pass filter, the filtering

specifications are usually given in terms of the

abruptness of the transition region, as shown in

Figure beside. Once 𝐾1 , Ω1 , 𝐾2 and Ω2 are

specified, the order of the Butterworth filter,

𝐾1 = 20 𝑙𝑜𝑔10
1

√1 + (
Ω1
Ω𝑐
)
2𝑛

𝐾1 = −10 𝑙𝑜𝑔10 (1 + (
Ω1
Ω𝑐
)
2𝑛

) (3.3)

𝐾2 = 20 𝑙𝑜𝑔10
1

√1 + (
Ω2
Ω𝑐
)
2𝑛

𝐾2 = −10 𝑙𝑜𝑔10 (1 + (
Ω2
Ω𝑐
)
2𝑛

) (3.4)

If we wish to satisfy our requirement of Ω𝑐 at Ω1 exactly and do better than our

requirement at Ω2 we use

(
Ω1

Ω𝑐
)
2𝑛
= 10−0.1𝐾1 − 1 (3.5)

While if we wish to satisfy our requirement at Ω2 and exceed our requirement at Ω1

we use

(
Ω2
Ω𝑐
)
2𝑛

= 10−0.1𝐾2 − 1 (3.6)

Dividing Eqn.(3.6) by (3.5) to cancel Ω𝑐 we have

(
Ω2
Ω1
)
2𝑛

=
10−0.1𝐾2 − 1

10−0.1𝐾1 − 1
 (3.7)

A simple closed form answer for is easily obtained from this expression and is given

by

𝑛 = ⌈
𝑙𝑜𝑔10[(10

−0.1𝐾1 − 1)/(10−0.1𝐾2 − 1)

2𝑙𝑜𝑔10
Ω1
Ω2

⌉ (3.8)

Where is the next larger integer.

Example 3.2:

a) Determine the order of a Butterworth filter that has a cutoff frequency of 1000

Hz and a gain of no more than -50 dB at 6000 Hz.

b) What is the actual gain in dB at 6000 Hz?

Solution:

a) The critical requirements are

Ω1 = Ω𝑐 = 2𝜋(1000)𝑟𝑎𝑑/𝑠 𝐾1 = 20𝑙𝑜𝑔10 (
1

√2
) = −3𝑑𝐵

Ω2 = 2𝜋(6000)𝑟𝑎𝑑/𝑠 𝐾2 ≤ −50𝑑𝐵

Substituting these requirements into Eqn.(3.8) gives

𝑛 = ⌈
𝑙𝑜𝑔10[(10

−0.1𝐾1 − 1)/(10−0.1𝐾2 − 1)

2𝑙𝑜𝑔10
Ω1
Ω2

⌉

𝑛 = ⌈
𝑙𝑜𝑔10[(10

−0.1(−3) − 1)/(10−0.1(−50) − 1)

2𝑙𝑜𝑔10 (
2𝜋(1000)
2𝜋(6000)

)
⌉𝑛 = ⌈3.21⌉ = 4

Therefore, we need a 4𝑡ℎ order Butterworth filter.

b) We can use Eq.(3.4) to calculate the actual gain at 6000 Hz. The gain in

decibels will be

𝐾2(𝑎𝑐𝑡𝑢𝑎𝑙) = 20 𝑙𝑜𝑔10
1

√1 + (
2𝜋(6000)
2𝜋(1000)

)
2(4)

= −62.25 dB

Example 3.3:

a) Determine the order of a Butterworth filter whose magnitude is 10 dB or

better less than the passband magnitude at 500 Hz and at least 60 dB less than

the passband magnitude at 5000 Hz.

b) Determine the cutoff frequency of the filter (in hertz).

c) What is the actual gain of the filter (in decibels) at 5000 Hz?

Solution:

a) The critical requirements are

Ω1 = 2𝜋(500)𝑟𝑎𝑑/𝑠 𝐾1 = −10𝑑𝐵

Ω2 = 2𝜋(5000)𝑟𝑎𝑑/𝑠 𝐾2 ≤ −60𝑑𝐵

𝑛 = ⌈
𝑙𝑜𝑔10[(10

−0.1𝐾1 − 1)/(10−0.1𝐾2 − 1)

2𝑙𝑜𝑔10
Ω1
Ω2

⌉

𝑛 = ⌈
𝑙𝑜𝑔10[(10

−0.1(−10) − 1)/(10−0.1(−60) − 1)

2𝑙𝑜𝑔10 (
500
5000

)
⌉ = ⌈2.52⌉ = 3

Therefore we need a 3𝑟𝑑 order Butterworth filter to meet the specifications.

b) To do better at 500 Hz, we have to use Eq. 3.5, to determine the cutoff

frequency.

(
2𝜋(500)

Ω𝑐
)
2(3)

= 10−0.1(10) − 1

Then, Ω𝑐 = 2178.26
𝑟𝑎𝑑

𝑠
(𝑓𝑐 = 346.68 𝐻𝑧)

c) The actual gain of the filter at 5000 Hz is

𝐾2(𝑎𝑐𝑡𝑢𝑎𝑙) = 20 𝑙𝑜𝑔10
1

√1 + (
5000
346.68)

2(3)

= −69.54 dB

3.3 Analog-to-Analog Transformations

If we replace 𝑠 of 𝐻(𝑠), the system function for a normalized low-pass filter, by

𝑠/Ω𝑢, we get a new transfer function 𝐻′(𝑠) ,given by

𝐻′(𝑠) = 𝐻(𝑠)|𝑠→𝑠/Ω𝑢 = 𝐻(𝑠/Ω𝑢)

If we evaluate the magnitude of the transfer function at to get the frequency

response we have

|𝐻′(𝑗Ω)| = |𝐻(𝑗Ω/Ω𝑢)|

At the value of Ω = Ω𝑢 we have

|𝐻′((𝑗Ω𝑢)| = |𝐻(𝑗Ω𝑢/Ω𝑢)| = |𝐻(𝑗1)|

That is, the frequency response for the new transfer function evaluated Ω = Ω𝑢 at is

equal to the value of the normalized transfer function at Ω = 1 . In a sense we have

moved the cut off frequency from 1 𝑟𝑎𝑑/𝑠 𝑡𝑜 Ω𝑢 and thus have a scaling of the

frequency axis. Similar transformations can be defined for taking low-pass transfer

functions to high-pass, bandpass and bandstop transfer functions. Table (3.2) gives

these transformations.

Example 3.4: Design an analog Butterworth filter that has a -2 dB or better cutoff

frequency of 20 rad/sec and at least 10 dB of attenuation at 30 rad/sec.

Solution: the critical requirements are

Ω1 = 20 , 𝐾1 = −2 , Ω2 = 30 , 𝐾2 = −10

𝑛 = ⌈
𝑙𝑜𝑔10[(10

−0.1𝐾1 − 1)/(10−0.1𝐾2 − 1)

2𝑙𝑜𝑔10
Ω1
Ω2

⌉

𝑛 = ⌈
𝑙𝑜𝑔10[(10

−0.1(−2) − 1)/(10−0.1(−10) − 1)

2𝑙𝑜𝑔10 (
20
30)

⌉ = ⌈3.3709⌉ = 4

Using this value of 𝑛 to exactly satisfy the -2 dB requirement gives

Ω𝑐 = 20/(10
−0.1(−2) − 1)1/8 = 21.3868

The normalized low-pass Butterworth filter for 𝑛 = 4, can be found from Table

(3.1) as

𝐻4(𝑠) =
1

(𝑠2 + 0.76536𝑠 + 1)(𝑠2 + 1.84776𝑠 + 1)

Applying a low-pass to low-pass transformation, 𝑠 → 𝑠/Ω𝑐, with Ω𝑐 = 21.3868

gives the desired transfer function as follows:

𝐻(𝑠) = 𝐻4(𝑠)|𝑠→ 𝑠
21.3868

=
1

[(
𝑠

21.3868)
2
+ 0.76536 (

𝑠
21.3868)

+ 1]

×
1

[(
𝑠

21.3868)
2
+ 1.84776 (

𝑠
21.3868)

+ 1]

=
2.09210 × 105

(𝑠2 + 16.3686𝑠 + 457.394)(𝑠2 + 39.5176𝑠 + 457.394)

3.4 Design of Bandpass Butterworth filter

The procedures for the design of a bandpass filter 𝐻𝐵𝑃(𝑠), to satisfy the given set of

specifications is composed of two steps.

1. Design a low-pass filter 𝐻𝐿𝑃(𝑠) with Ω𝑟,

2. Apply the low-pass to bandpass transformation using the desired Ω𝑢 and Ω𝑙.

Example 3.5: Design an analog bandpass filter with the following characteristics:

(a) -3.0103 dB upper and lower cutoff frequency of 20 kHz and 50 Hz

respectively

(b) A stopband attenuation of at least 20 dB at 20 Hz and 45 kHz.

Solution: From the specifications above we can identify the following critical

frequencies:

Ω1 = 2𝜋(20) = 125.663 𝑟𝑎𝑑/𝑠𝑒𝑐

Ω2 = 2𝜋(45) = 2.82743 × 10
5𝑟𝑎𝑑/𝑠𝑒𝑐

Ω𝑢 = 2𝜋(20) = 1.25663 × 10
5 𝑟𝑎𝑑/𝑠𝑒𝑐

Ω𝑙 = 2𝜋(50) = 314.159 𝑟𝑎𝑑/𝑠𝑒𝑐

Also the low-pass prototype must satisfy

0 ≥ 20𝑙𝑜𝑔|𝐻𝐿𝑃(𝑗1)| ≥ −3.0103 𝑑𝐵

20𝑙𝑜𝑔|𝐻𝐿𝑃(𝑗Ω𝑟)| ≤ −20 𝑑𝐵

From Table (3.2)

𝐴 = 2.5053

𝐵 = 2.2545

Since,

Ωr = min {|A|, |B|}

Ωr = 2.2545

The low-pass Butterworth filter of order 𝑛 is

𝑛 = ⌈[log (
100.30102 − 1

102 − 1
)] [2log (

1

2.2545
)]⁄ ⌉ = ⌈2.829⌉ = 3

From the Butterworth Table (3.1) and 𝑛 we have the low-pass prototype as

𝐻𝐿𝑃 =
1

𝑠32 + 2𝑠2 + 2𝑠 + 1

The required analog-to-analog transformation is determined from Ω𝑢 and Ω𝑙 as

𝑠 →
𝑠2 + Ω𝑙Ω𝑢
𝑠(Ω𝑢−Ω𝑙)

=
𝑠2 + 3.94784 × 107

𝑠(1.25349 × 105)

𝐻𝐵𝑃(𝑠) then is finally seen to be

𝐻𝐵𝑃(𝑠) =
1

{

 [
𝑠2 + 3.94784 × 107

𝑠(1.25349 × 105)
]
3

+ 2 [
𝑠2 + 3.94784 × 107

𝑠(1.25349 × 105)
]
2

+2
𝑠2 + 3.94784 × 107

𝑠(1.25349 × 105)
+ 1

}

𝐻𝐵𝑃(𝑠) =
1.969530 × 1015𝑠3

{
𝑆6 + 2.5069909 × 105𝑠5 + 3.15434 × 1010𝑠4

+1.9893 × 1015𝑠3 + 1.245285 × 1018𝑠2

+3.9072593 × 1020𝑠 + 6.15289108 × 1022
}

3.5 Chebyshev Filters

Chebyshev filters are defined in terms of the Chebyshev polynomials:

𝑇𝑛(𝑥) = {
cos(𝑛 cos−1 𝑥) |𝑥| ≤ 1

cosh(𝑛 cosh−1 𝑥) |𝑥| > 1
 (3.9𝑎)

These polynomials may be generated recursively as follows,

𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥) 𝑛 ≥ 2 (3.9𝑏)

With 𝑇0(𝑥) = 1 and 𝑇1(𝑥) = 𝑥 . a list of the first seventh Chebyshev polynomials is

given in Table (3.3) for reference.

Table (3.3) the first seventh Chebyshev polynomials

The following properties of the Chebyshev polynomials follow from Eqn.(3.9).

1. For |𝑥| ≤ 1 the polynomials are bounded by 1 in magnitude, |𝑇𝑛(𝑥)| ≤ 1, and

oscillate between ±1. For |𝑥| > 1 , the polynomials increase monotonically

with x.

2. 𝑇𝑛(1) = 1 for all 𝑛 .

3. 𝑇𝑛(0) = ±1 for 𝑛 even, and 𝑇𝑛(0) = 0 for 𝑛 odd.

4. All of the roots of 𝑇𝑛(𝑥) are in the interval −1 ≤ 𝑥 ≤ 1.

The magnitude square of the frequency response for type I Chebyshev filter is

|𝐻𝑛(𝑗Ω)|
2 =

1

1 + 𝜖2𝑇𝑛
2(Ω)

Where 𝑛 is the order of the filter, and 𝜖 is parameter that controls the passband ripple

amplitude. Because 𝑇𝑛
2(Ω)varies between 0 and 1 for |Ω| < 1, |𝐻𝑛(𝑗Ω)|

2 oscillate

between 1 and 1/(1 + 𝜖2) . As the order of the filter increases, the number of

oscillations (ripples) in the passband increases, and the transition width between the

passband and stopband becomes narrower. Example are given in Fig.(3.3) for 𝑛 = 5

and 6.

Fig.(3.3)

Form the rational function

|𝐻𝑛(𝑠)|
2 = 𝐻𝑛(𝑠)𝐻𝑛(−𝑠) =

1

1 + 𝜖2𝑇𝑛
2(𝑠/𝑗)

Construct the system function 𝐻𝑛(𝑠) by taking the 𝑛 poles that lie in the left-half s-

plane.

𝐻𝑛(𝑠) =
𝐾

∏ (𝑠 − 𝑠𝑘)𝐿𝐻𝑃
𝑝𝑜𝑙𝑒𝑠

=
𝐾

𝑉𝑛(𝑠)

Where K is a normalizing factor whose value makes 𝐻𝑛(0) equal 1 for 𝑛 odd and

1/√1 + 𝜖2for 𝑛 even.

𝐾 = 𝑉𝑛(0) = 𝑏𝑜 𝑛 𝑜𝑑𝑑

𝐾 =
𝑉𝑛(0)

√(1 + 𝜖2)
 𝑛 𝑒𝑣𝑒𝑛

𝑉𝑛(𝑠) = 𝑠
𝑛 + 𝑏𝑛−1𝑠

𝑛−1 +⋯+ 𝑏𝑛𝑠 + 𝑏0

The order 𝑛 that satisfied ripple characterized by 𝜖 and a stopband gain 1/𝐴 at a

particular Ω𝑟 is given by

𝑛 = ⌈
𝑙𝑜𝑔10[𝑔 + (𝑔

2 − 1)1/2]

𝑙𝑜𝑔10 [Ω𝑟 + (Ω𝑟
2 − 1)

1/2
]
⌉

Where

𝐴 = 1/|𝐻𝑛(𝑗Ω𝑟)|

𝑔 = [(𝐴2 − 1)/𝜖]1/2

Table(3.4)gives the 𝑉𝑛(𝑠) in polynomial form 𝑛 = 1 for to 10 and corresponding to

0.5, 1, 2 and 3dB ripples.

Table(3.4)

Example 3.6: Design a Chebyshev lowpass filter to satisfy the following

specifications:

(a) Acceptable passband ripple of 2 dB.

(b) Cutoff radian frequency of 40 rad/sec.

(c) Stopband attenuation of 20 dB or more at 52 rad/sec.

Solution: the general approach is

(a) Change the requirements to those of a lowpass unit bandwidth prototype;

Ω𝑟 =
Ω𝑟
′

Ω𝑢
=
52

40
= 1.3

(b) Design a normalized Chebyshev lowpass filter with cutoff at 1rad/sec and

Ω𝑟 = 1.3

20𝑙𝑜𝑔|𝐻𝑛(𝑗1)| = 20𝑙𝑜𝑔 [1/√1 + 𝜖
2] = −2 → 𝜖 = 0.76478

20𝑙𝑜𝑔|𝐻𝑛(𝑗1.3)| = 20𝑙𝑜𝑔[1/𝐴] = −20 → 𝐴 = 10

𝑔 = [(100 − 1)/(0.76478)2]1/2 = 13.01

𝑛 = ⌈
𝑙𝑜𝑔10[𝑔 + (𝑔

2 − 1)1/2]

𝑙𝑜𝑔10 [Ω𝑟 + (Ω𝑟
2 − 1)

1/2
]
⌉

𝑛 = ⌈
𝑙𝑜𝑔10[13.01 + ((13.01)

2 − 1)1/2]

𝑙𝑜𝑔10[1.3 + ((1.3)
2 − 1)1/2]

⌉ = ⌈4.3⌉ = 5

Using the 2-dB ripple part of Table (3.4) for 𝑛 = 5,𝐻(0) = 1 (𝑛 𝑜𝑑𝑑), the desired

Chebyshev unit bandwidth lowpass filter is

𝐻5(𝑠) = 𝐾/(𝑠
5 + 𝑏4𝑠

4 + 𝑏3𝑠
3 + 𝑏2𝑠

2 + 𝑏1𝑠 + 𝑏0

𝐻5(𝑠) =
0.08172

𝑠5 + 0.70646𝑠4 + 1.4995𝑠3 + 0.6934𝑠2 + 0.459349𝑠 + 0.08172

(c) From Table (3.2), apply the transformation 𝑠 → 𝑠/40

𝐻𝑑(𝑠) = 𝐻5(𝑠)|𝑠→ 𝑠
40

=
0.08172

(
𝑠
40)

5
+ 0.70646𝑠4 + 1.4995(

𝑠
40)

3
+ 0.6934(

𝑠
40)

2
+ 0.459349 (

𝑠
40)

+ 0.08172

=
8.368128 × 106

𝑠5 + 28.2584𝑠4 + 2399.2𝑠3 + 44377.6𝑠2 + 1.17593344 × 106𝑠 + 8.368128 × 106

3.6 The Bilinear Transformation

The bilinear transformation is a mapping from the s-plane to the z-plane defined by

𝑠 =
2

𝑇

1 − 𝑧−1

1 + 𝑧−1

Where 1/𝑇 is the sampling frequency which can be set to 1. Given an analog filter

with a system function 𝐻𝑑(𝑠) , the digital filter is designed as follows:

𝐻(𝑧) = 𝐻𝑑 (
2

𝑇

1 − 𝑧−1

1 + 𝑧−1
)

The steps involved in the design of a digital low-pass filter with a passband cutoff

frequency 𝜔1, stopband cutoff frequency 𝜔2, passband magnitude 𝐾1 and stopband

magnitude 𝐾2 ,are as follows:

1. Prewar the passband and stopband cutoff frequencies of the digital filter, 𝜔1 and

𝜔2, using the following formula

Ω𝑖 =
2

𝑇
 tan(

𝜔𝑖
2
) 𝑖 = 1,2

to determine the passband and cutoff frequencies of the analog low-pass filter.

2. Design an analog low-pass filter with the specifications Ω1, Ω2, 𝐾1 and 𝐾2.

3. Apply the bilinear transformation 𝑇 = 1 to the filter designed in step2.

Example 3.7: Design and realize a digital low-pass filter using the bilinear

transformation method to satisfy the following characteristics:

(a) -3.01 dB cutoff frequency of 0.5𝜋 rad.

(b) Magnitude down at least 15 dB at 0.75𝜋 rad. The required frequency

response is shown below

Solution:

Step 1. Prewar critical frequencies using 𝑇 = 1.

Ω𝑖 =
2

𝑇
 tan(

𝜔𝑖
2
) 𝑖 = 1,2

Ω1 = 2 tan(
0.5𝜋

2
) = 2.000

Ω2 = 2 tan(
0.75𝜋

2
) = 4.8282

Step 2.Design an analog low-pass filter with the specifications Ω1, Ω2, 𝐾1 and 𝐾2.

𝑛 = ⌈
𝑙𝑜𝑔10[(10

3.01/10 − 1)/(1015/10 − 1)]

2𝑙𝑜𝑔10 (
2

4.8282)
⌉ = ⌈1.9412⌉ = 2

Using this value of 𝑛 to exactly satisfy the -3.01 dB requirement gives

Ω𝑐 =
20

(103.01/10 − 1)
1
4

= 2

Therefore the required prewarped analog filter using the Butterworth Table (3.1)

and the low-pass to low-pass transformation from Table (3.2) is

𝐻𝑎(𝑠) =
1

𝑠2 + √2𝑠 + 1
|
𝑠→𝑠/2

=
4

𝑠2 + 2√2𝑠 + 4

Step3 . Applying the bilinear transformation

𝐻(𝑧) = 𝐻𝑎(𝑠)|
𝑠=
2(1−𝑧−1)
 (1+𝑧−1)

=
4

[
2(1 − 𝑧−1)
 (1 + 𝑧−1)

]
2

+ 2√2 [
2(1 − 𝑧−1)
 (1 + 𝑧−1)

] + 4

=
1 + 2𝑧−1 + 𝑧−2

3.4142135 + 0.5857865𝑧−2

=
0.29289 + 0.58578𝑧−1 + 0.29289𝑧−2

1 + 0.17157𝑧−2

Direct II realization of this filter is shown below, where 𝑏𝑜 = 0.29289, 𝑏1 =

0.58578, 𝑏2 = 0.29289, 𝑎1 = 0, 𝑎2 = 0.17157

The plot of 20 𝑙𝑜𝑔|𝐻(𝑒𝑗𝑤)| versus 𝜔 is shown below

