
12.1 The Basics of Digital Electronics

Until now I have mainly covered the analog realm of electronics—circuits that accept
and respond to voltages that vary continuously over a given range. Such analog cir-
cuits included rectifiers, filters, amplifiers, simple RC timers, oscillators, simple tran-
sistor switches, etc. Although each of these analog circuits is fundamentally important
in its own right, these circuits lack an important feature—they cannot store and
process bits of information needed to make complex logical decisions. To incorporate
logical decision-making processes into a circuit, you need to use digital electronics.

12.1.1 Digital Logic States

In digital electronics there are only two voltage states present at any point within a
circuit. These voltage states are either high or low. The meaning of a voltage being
high or low at a particular location within a circuit can signify a number of things. For
example, it may represent the on or off state of a switch or saturated transistor. It may
represent one bit of a number, or whether an event has occurred, or whether some
action should be taken.

The high and low states can be represented as true and false statements, which are
used in Boolean logic. In most cases, high = true and low = false. However, this does
not have to be the case—you could make high = false and low = true. The decision to
use one convention over the other is a matter left ultimately to the designer. In digi-
tal lingo, to avoid people getting confused over which convention is in use, the term
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positive true logic is used when high = true, while the term negative true logic is used
when high = false.

In Boolean logic, the symbols 1 and 0 are used to represent true and false, respec-
tively. Now, unfortunately, 1 and 0 are also used in electronics to represent high and
low voltage states, where high = 1 and low = 0. As you can see, things can get a bit
confusing, especially if you are not sure which type of logic convention is being used,
positive true or negative true logic. I will give some examples later on in this chapter
that deal with this confusing issue.

The exact voltages assigned to a high or low voltage states depend on the specific
logic IC that is used (as it turns out, digital components are entirely IC based). As a
general rule of thumb, +5 V is considered high, while 0 V (ground) is considered low.
However, as you will see in Section 12.4, this does not have to be the case. For exam-
ple, some logic ICs may interrupt a voltage from +2.4 to +5 V as high and a voltage
from +0.8 to 0 V as low. Other ICs may use an entirely different range. Again, I will
discuss these details later.

12.1.2 Number Codes Used in Digital Electronics

Binary

Because digital circuits work with only two voltage states, it is logical to use the
binary number system to keep track of information. A binary number is composed of
two binary digits, 0 and 1, which are also called bits (e.g., 0 = low voltage, 1 = high
voltage). By contrast, a decimal number such as 736 is represented by successive
powers of 10:

73610 = 7 × 102 + 3 × 101 + 6 × 100

Similarly, a binary number such as 11100 (2810) can be expressed as successive powers
of 2:

111002 = 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20

The subscript tells what number system is in use (X10 = decimal number, X2 = binary
number). The highest-order bit (leftmost bit) is called the most significant bit (MSB),
while the lowest-order bit (rightmost bit) is called the least significant bit (LSB). Meth-
ods used to convert from decimal to binary and vice versa are shown below.

It should be noted that most digital systems deal with 4, 8, 16, 32, etc., bit strings.
In the decimal-to-binary conversion example given here, you had a 7-bit answer. In

10910 to binary

109/2 = 54 w/ remainder 1 (LSB)
54/2   = 27 w/ remainder 0
27/2   = 13 w/ remainder 1
13/2   = 6 w/ remainder 1
6/2     = 3 w/ remainder 0
3/2     = 1 w/ remainder 1
1/2     = 0 w/remainder 1 (MSB)

Answer: 1101101
8-bit answer: 01101101

Take decimal
number and keep
dividing by 2,
while keeping the
remainders.   The
first remainer
becomes the LSB,
while the last one
becomes the MSB.

Decimal-to-Binary Conversion

10100100 to decimal

1    0   1   0   0   1   0   0

Answer: 16410

Expand the
binary number
as shown and
add up the
terms.  The
result will be in
decimal form.

Decimal-to-Binary Conversion

2021222324252627

0 x 20 = 0
0 x 21 = 0
1 x 22 = 4
0 x 23 = 0
0 x 24 = 0
1 x 25 = 32
0 x 26 = 0
1 x 27 = 128

(MSB) (LSB)
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an 8-bit system, you would have to add an additional 0 in front of the MSB 
(e.g., 01101101). In a 16-bit system, 9 additional 0s would have to be added (e.g.,
0000000001101101).

As a practical note, the easiest way to convert a number from one base to another
is to use a calculator. For example, to convert a decimal number into a binary num-
ber, type in the decimal number (in base 10 mode) and then change to binary mode
(which usually entails a 2d-function key). The number will now be in binary (1s and
0s). To convert a binary number to a decimal number, start out in binary mode, type
in the number, and then switch to decimal mode.

Octal and Hexadecimal

Two other number systems used in digital electronics include the octal and hexadec-
imal systems. In the octal system (base 8), there are 8 allowable digits: 0, 1, 2, 3, 4, 5,
6, 7. In the hexadecimal system, there (base 16) there are 16 allowable digits: 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Here are example octal and hexadecimal numbers with
decimal equivalents:

2478 (octal) = 2 × 82 + 4 × 81 + 9 × 80 = 16710 (decimal)
2D516 (hex) = 2 × 162 + D (=1310) × 161 + 9 × 160 = 72510 (decimal)

Now, binary numbers are of course the natural choice for digital systems, but
since these binary numbers can become long and difficult to interpret by our decimal-
based brains (a result of our 10 fingers), it is common to write them out in hexadeci-
mal or octal form. Unlike decimal numbers, octal and hexadecimal numbers can be
translated easily to and from binary. This is so because a binary number, no matter
how long, can be broken up into 3-bit groupings (for octal) or 4-bit groupings (for
hexadecimal)—you simply add zero to the beginning of the binary number if the
total numbers of bits is not divisible by 3 or 4. Figure 12.3 should paint the picture
better than words.

Today, the hexadecimal system has essentially replaced the octal system. The octal
system was popular at one time, when microprocessor systems used 12-bit and 36-bit
words, along with a 6-bit alphanumeric code—all these are divisible by 3-bit units (1
octal digit). Today, microprocessor systems mainly work with 8-bit, 16-bit, 20-bit, 32-
bit, or 64-bit words—all these are divisible by 4-bit units (1 hex digit). In other words,
an 8-bit word can be broken down into 2 hex digits, a 16-bit word into 4 hex digits, a
20-bit word into 5 hex digits, etc. Hexadecimal representation of binary numbers
pops up in many memory and microprocessor applications that use programming

7        1        4

A 3-digit binary number is replaced for each
octal digit, and vise versa.  The 3-digit terms are
then grouped (or octal terms are grouped).

1 0 1 0 1 0 1 1 1

Octal to Binary Binary to Octal

111 001 1002 to octal

1 1 1 0 0 1 1 0 0

Answer: 714 8

3E916 to binary

3          E         9

Answer: 0011 1110 10012

A 4-digit binary number is replaced for each hex digit, and vise
versa.  The 4-digit terms are then grouped (or hex terms are
grouped).

0 0 1 1

Hex to Binary Binary to Hex

1001 1111 1010 0111 2 to octal

Answer: 9FA716

1 1 1 0 1 0 0 1

1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1

9 F A 7

5378 to binary

5 3 7

Answer: 1010101112

FIGURE 12.3
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codes (e.g., within assembly language) to address memory locations and initiate
other specialized tasks that would otherwise require typing in long binary numbers.
For example, a 20-bit address code used to identify 1 of 1 million memory locations
can be replaced with a hexadecimal code (in the assembly program) that reduces the
count to 5 hex digits. [Note that a compiler program later converts the hex numbers
within the assembly language program into binary numbers (machine code) which
the microprocessor can use.] Table 12.1 gives a conversion table.

TABLE 12.1 Decimal, Binary, Octal, Hex, BCD Conversion Table

DECIMAL BINARY OCTAL HEXADECIMAL BCD

00 0000 0000 00 00 0000 0000

01 0000 0001 01 01 0000 0001

02 0000 0010 02 02 0000 0010

03 0000 0011 03 03 0000 0011

04 0000 0100 04 04 0000 0100

05 0000 0101 05 05 0000 0101

06 0000 0110 06 06 0000 0110

07 0000 0111 07 07 0000 0111

08 0000 1000 10 08 0001 1000

09 0000 1001 11 09 0000 1001

10 0000 1010 12 0A 0001 0000

11 0000 1011 13 0B 0001 0001

12 0000 1100 14 0C 0001 0010

13 0000 1101 15 0D 0001 0011

14 0000 1110 16 0E 0001 0100

15 0000 1111 17 0F 0001 0101

16 0001 0000 20 10 0001 0110

17 0001 0001 21 11 0001 0111

18 0001 0010 22 12 0001 1000

19 0001 0011 23 13 0001 1001

20 0001 0100 24 14 0010 0000

BCD Code

Binary-coded decimal (BCD) is used to represent each digit of a decimal number as a
4-bit binary number. For example, the number 15010 in BCD is expressed as
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1 5 0 15010 = 0001 0101 000(BCD)

0001 0101 000

To convert from BCD to binary is vastly more difficult, as shown in Fig. 12.4. Of
course, you could cheat by converting the BCD into decimal first and then convert to
binary, but that does not show you the mechanics of how machines do things with 1s
and 0s. You will rarely have to do BCD-to-binary conversion, so I will not dwell on
this topic—I will leave it to you to figure out how it works (see Fig. 12.4).

BCD is commonly used when outputting to decimal (0–9) displays, such as 
those found in digital clocks and multimeters. BCD will be discussed later in 
Section 12.3.

Sign-Magnitude and 2’s Complement Numbers

Up to now I have not considered negative binary numbers. How do you represent
them? A simple method is to use sign-magnitude representation. In this method, you
simply reserve a bit, usually the MSB, to act as a sign bit. If the sign bit is 0, the num-
ber is positive; if the sign bit is 1, the number is negative (see Fig. 12.5). Although the
sign-magnitude representation is simple, it is seldom used because adding requires a
different procedure than subtracting (as you will see in the next section). Occasion-
ally, you will see sign-magnitude numbers used in display and analog-to-digital
applications but hardly ever in circuits that perform arithmetic.

A more popular choice when dealing with negative numbers is to use 2’s comple-
ment representation. In 2’s complement, the positive numbers are exactly the same as
unsigned binary numbers. A negative number, however, is represented by a binary
number, which when added to its corresponding positive equivalent results in zero.
In this way, you can avoid two separate procedures for doing addition and subtrac-
tion. You will see how this works in the next section. A simple procedure outlining
how to convert a decimal number into a binary number and then into a 2’s comple-
ment number, and vice versa, is outlined in Fig. 12.5.

Arithmetic with Binary Numbers

Adding, subtracting, multiplying, and dividing binary numbers, hexadecimal num-
bers, etc., can be done with a calculator set to that particular base mode. But that’s

Weighting factor

bit position decimal binary

a 1 1
b 2 10
c 4 100
d 8 1000
e 10 1010
f 20 10100
g 40 101000
h 80 1010000
i 100 1100100
j 200 11001000
k 400 110010000
l 800 1100100000

0110 0011

6 3

0001
0010

10100
101000
111111

+

1000 0010

8 2

0011

3

0001
0010

10100
1100100000
1100110111

+

3-digit BCD

MSD Second digit LSD

l    k    j    i h    g    f    e d    c    b   a

2
0 x 100

2
1 x 100

2
2 x 100

2
3 x 100

2
0 x 10

2
1 x 10

2
2 x 10

2
3 x 10

2
0 x 1

2
1 x 1

2
2 x 1

2
3 x 1

(decimal)

(BCD)

(binary)

FIGURE 12.4



318 PRACTICAL ELECTRONICS FOR INVENTORS

cheating, and it doesn’t help you understand the “mechanics” of how it is done. The
mechanics become important when designing the actual arithmetical circuits. Here
are the basic techniques used to add and subtract binary numbers.

ADDING

Adding binary numbers is just like adding decimal numbers; whenever
the result of adding one column of numbers is greater than one digit, a
1 is carried over to the next column to be added.

SUBTRACTION

Subtracting decimal numbers is not as easy as it looks. It is similar to
decimal subtraction but can be confusing. For example, you might think
that if you were to subtract a 1 from a 0, you would borrow a 1 from the
column to the left. No! You must borrow a 10 (210). It becomes a headache
if you try to do this by hand. The trick to subtracting binary numbers is
to use the 2’s complement representation that provides the sign bit and
then just add the positive number with the negative number to get the
sum.This method is often used by digital circuits because it allows both
addition and subtraction, without the headache of having to subtract the
smaller number from the larger number.

ASCII

ASCII (American Standard Code for Information Interchange) is an alphanumeric code
used to transmit letters, symbols, numbers, and special nonprinting characters between
computers and computer peripherals (e.g., printer, keyboard, etc.). ASCII consists of 128
different 7-bit codes. Codes from 000 0000 (or hex 00) to 001 1111 (or hex 1F) are reserved
for nonprinting characters or special machine commands like ESC (escape), DEL
(delete), CR (carriage return), LF (line feed), etc. Codes from 010 0000 (or hex 20) to 111
1111 (or hex 7F) are reserved for printing characters like a, A, #, &, {, @, 3, etc. See Tables
12.2 and 12.3. In practice, when ASCII code is sent, an additional bit is added to make it
compatible with 8-bit systems. This bit may be set to 0 and ignored, it may be used as a
parity bit for error detection (I will cover parity bits in Section 12.3), or it may act as a
special function bit used to implement an additional set of specialized characters.

Decimal, Sign-Magnitude, 2’s Complement
Conversion Table

SIGN-
DECIMAL MAGNITUDE 2’S COMPLEMENT

+7 0000 0111 0000 0111
+6 0000 0110 0000 0110
+5 0000 0101 0000 0101
+4 0000 0100 0000 0100
+3 0000 0011 0000 0011
+2 0000 0010 0000 0010
+1 0000 0001 0000 0001
0 0000 0000 0000 0000

−1 1000 0001 1111 1111
−2 1000 0010 1111 1110
−3 1000 0011 1111 1101
−4 1000 0100 1111 1100
−5 1000 0101 1111 1011
−6 1000 0110 1111 1010
−7 1000 0111 1111 1001
−8 1000 1000 1111 1000

Decimal to 2's complement

If the decimal number is positive, the 2's complement
number is equal to the true binary equivalent of the
decimal number.

If the decimal number is negative, the 2's complement
number is found by:
1)  Complementing each bit of the true binary
equivalent of the decimal (making 1's into 0's and vise
versa).  This is is called taking the 1's complement.
2)  Adding 1 to the 1's complement number to get the
magnitude bits.  The sign bit will always end up being 1.

2's complement to decimal If the 2's complement number is positive (sign bit = 0),
perform a regular binary-to-decimal conversion.

If the 2's complement number is negative (sign bit =
1), the decimal sign will be negative.  The decimal is
found by:
1)  Complementing each bit of the 2's complement
number.
2)  Adding 1 to get the true binary equivalent.
3)  Performing a true binary-to-decimal conversion.

1100 1101 (2's comp) to decimal

2's comp        =  1100 1101
Complement  =  0011 0010
Add 1            =              +1
True binary    =  0011 0011
Decimal  eq.  =       – 51

10

– 41
10

 to 2's complement

true binary  = 0010 1001

+ 410 to 2's complement

2's comp     = 0010 1001

true binary  = 0010 1001
1's comp     = 1101 0110
Add 1         =             +1
2's comp     =  0010 1001

0    1    0    1
0    0    1    1
1    0    0    0

111

510  =
310  =

+ 2010  =  0 0 0 1 0 1 0 0
8710  =  0 1 0 1 0 1 1 1
            0 1 1 0 1 0 1 1

+

0    1    0    0
0    0    0    1
0    0    1    1

_

10 100
1

410
110
310

_

Subtraction done the long way

+1910  =  0 0 0 1 0 0 1 1
- 710    =  1 1 1 1 1 0 0 1

Sum    =  0 0 0 0 1 1 0 0

2's comp. subtraction

FIGURE 12.5

FIGURE 12.7

FIGURE 12.6



TABLE 12.2 ASCII Nonprinting Characters

DEC HEX 7-BIT CODE CONTROL CHAR CHAR MEANING DEC HEX 7-BIT CONTROL CHAR CHAR MEANING

00 00 000 0000 ctrl-@ NUL Null 16 10 001 0000 ctrl-P DLE Data line escape

01 01 000 0001 ctrl-A SOH Start of heading 17 11 001 0001 ctrl-Q DC1 Device control 1

02 02 000 0010 ctrl-B STX Start of text 18 12 001 0010 ctrl-R DC2 Device control 2

03 03 000 0011 ctrl-C ETX End of text 19 13 001 0011 ctrl-S DC3 Device control 3

04 04 000 0100 ctrl-D EOT End of xmit 20 14 001 0100 ctrl-T DC4 Device control 4

05 05 000 0101 ctrl-E ENQ Enquiry 21 15 001 0101 ctrl-U NAK Neg acknowledge

06 06 000 0110 ctrl-F ACK Acknowledge 22 16 001 0110 ctrl-V SYN Synchronous idle

07 07 000 0111 ctrl-G BEL Bell 23 17 001 0111 ctrl-W ETB End of xmit block

08 08 000 1000 ctrl-H BS Backspace 24 18 001 1000 ctrl-X CAN Cancel

09 09 000 1001 ctrl-I HT Horizontal tab 25 19 001 1001 ctrl-Y EM End of medium

10 0A 000 1010 ctrl-J LF Line feed 26 1A 001 1010 ctrl-Z SUB Substitute

11 0B 000 1011 ctrl-K VT Vertical tab 27 1B 001 1011 ctrl-[ ESC Escape

12 0C 000 1100 ctrl-L FF Form feed 28 1C 001 1100 ctrl-\ FS File separator

13 0D 000 1101 ctrl-M CR Carriage return 29 1D 001 1101 ctrl-] GS Group separator

14 0E 000 1110 ctrl-N S0 Shift out 30 1E 001 1110 ctrl-^ RS Record separator

15 0F 000 1111 ctrl-O SI Shift in 31 1F 001 1111 ctrl-_ US Unit separator

TABLE 12.3 ASCII Printing Characters

DEC HEX 7-BIT CODE CHAR DEC HEX 7-BIT CHAR DEC HEX 7-BIT CODE CHAR

32 20 010 0000 SP 64 40 100 0000 @ 96 60 110 0000 ’

33 21 010 0001 ! 65 41 100 0001 A 97 61 110 0001 a

34 22 010 0010 “ 66 42 100 0010 B 98 62 110 0010 b

35 23 010 0011 # 67 43 100 0011 C 99 63 110 0011 c

36 24 010 0100 $ 68 44 100 0100 D 100 64 110 0100 d

37 25 010 0101 % 69 45 100 0101 E 101 65 110 0101 e

38 26 010 0110 & 70 46 100 0110 F 102 66 110 0110 f

39 27 010 0111 ‘ 71 47 100 0111 G 103 67 110 0111 g

40 28 010 1000 ( 72 48 100 1000 H 104 68 110 1000 h

41 29 010 1001 ) 73 49 100 1001 I 105 69 110 1001 i

42 2A 010 1010 * 74 4A 100 1010 J 106 6A 110 1010 j

43 2B 010 1011 + 75 4B 100 1011 K 107 6B 110 1011 k

44 2C 010 1100 , 76 4C 100 1100 L 108 6C 110 1100 l

45 2D 010 1101 - 77 4D 100 1101 M 109 6D 110 1101 m

46 2E 010 1110 . 78 4E 100 1110 N 110 6E 110 1110 n

47 2F 010 1111 / 79 4F 100 1111 O 111 6F 110 1111 o

48 30 011 0000 0 80 50 101 0000 P 112 70 111 0000 p

49 31 011 0001 1 81 51 101 0001 Q 113 71 111 0001 q

50 32 011 0010 2 82 52 101 0010 R 114 72 111 0010 r

51 33 011 0011 3 83 53 101 0011 S 115 73 111 0011 s

52 34 011 0100 4 84 54 101 0100 T 116 74 111 0100 t

53 35 011 0101 5 85 55 101 0101 U 117 75 111 0101 u

54 36 011 0110 6 86 56 101 0110 V 118 76 111 0110 v

55 37 011 0111 7 87 57 101 0111 W 119 77 111 0111 w

56 38 011 1000 8 88 58 101 1000 X 120 78 111 1000 x

57 39 011 1001 9 89 59 101 1001 Y 121 79 111 1001 y

58 3A 011 1010 : 90 5A 101 1010 Z 122 7A 111 1010 z

59 3B 011 1011 ; 91 5B 101 1011 [ 123 7B 111 1011 {

60 3C 011 1100 < 92 5C 101 1100 \ 124 7C 111 1100 |

61 3D 011 1101 = 93 5D 101 1101 ] 125 7D 111 1101 }

62 3E 011 1110 > 94 5E 101 1110 ^ 126 7E 111 1110 ∼
63 3F 011 1111 ? 95 5F 101 1111 _ 127 7F 111 1111 DEL

319
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12.1.3 Clock Timing and Parallel versus Serial Transmission

Before moving on to the next section, let’s take a brief look at three important items:
clock timing, parallel transmission, and serial transmission.

Clock Timing

Digital circuits require precise timing to func-
tion properly. Usually, a clock circuit that gen-
erates a series of high and low pulses at a fixed
frequency is used as a reference on which to
base all critical actions executed within a sys-
tem. The clock is also used to push bits of data
through the digital circuitry. The period of a
clock pulse is related to its frequency by T = 1/f.
So, if T = 10 ns, then f = 1/(10 ns) = 100 MHz.

Serial versus Parallel Representation

Binary information can be transmitted from one location to another in either a serial
or parallel manner. The serial format uses a single electrical conductor (and a com-
mon ground) for data transfer. Each bit from the binary number occupies a separate
clock period, with the change from one bit to another occurring at each falling or
leading clock edge—the type of edge depends on the circuitry used. Figure 12.9
shows an 8-bit (10110010) word that is transmitted from circuit A to circuit B in 8
clock pulses (0–7). In computer systems, serial communications are used to transfer
data between keyboard and computer, as well as to transfer data between two com-
puters via a telephone line.

Parallel transmission uses separate electrical conductors for each bit (and a com-
mon ground). In Fig. 12.9, an 8-bit string (01110110) is sent from circuit A to circuit
B. As you can see, unlike serial transmission, the entire word is transmitted in only
one clock cycle, not 8 clock cycles. In other words, it is 8 times faster. Parallel com-
munications are most frequently found within microprocessor systems that use
multiline data and control buses to transmit data and control instructions from the
microprocessor to other microprocessor-based devices (e.g., memory, output regis-
ters, etc.).
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12.2 Logic Gates

Logic gates are the building blocks of digital electronics. The fundamental logic gates
include the INVERT (NOT), AND, NAND, OR, NOR, exclusive OR (XOR), and
exclusive NOR (XNOR) gates. Each of these gates performs a different logical opera-
tion. Figure 12.10 provides a description of what each logic gate does and gives a
switch and transistor analogy for each gate.

in out
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0
1

out
1
0

Truth table
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0
+

in

lamp
(out)

On = 1
Off = 0

INVERT (NOT)
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12.2.1 Multiple-Input Logic Gates

AND, NAND, OR, and NOR gates often come with more than two inputs (this is
not the case with XOR and XNOR gates, which require two inputs only). Figure
12.11 shows a 4-input AND, an 8-input AND, a 3-input NOR, and an 8-input NOR
gate. With the 8-input AND gate, all inputs must be high for the output to be high.
With the 8-input OR gate, at least one of the inputs must be high for the output to
go high.

12.2.2 Digital Logic Gate ICs

The construction of digital gates is best left to the IC manufacturers. In fact, mak-
ing gates from discrete components is highly impractical in regard to both overall
performance (power consumption, speed, drive capacity, etc.) and overall cost
and size.

There are a number of technologies used in the fabrication of digital logic. The
two most popular technologies include TTL (transistor-transistor logic) and CMOS
(complementary MOSFET) logic. TTL incorporates bipolar transistors into its design,
while CMOS incorporates MOSFET transistors. Both technologies perform the same
basic functions, but certain characteristics (e.g., power consumption, speed, output
drive capacity, etc.) differ. There are many subfamilies within both TTL and CMOS.
These subfamilies, as well as the various characteristics associated with each sub-
family, will be discussed in greater detail in Section 12.4.

A logic IC, be it TTL or CMOS, typically houses more than one logic gate (e.g.,
quad 2-input NAND, hex inverter, etc.). Each of the gates within the IC shares a com-
mon supply voltage that is implemented via two supply pins, a positive supply pin
(+VCC or +VDD) and a ground pin (GND). The vast majority of TTL and CMOS ICs are
designed to run off a +5-V supply. (This does not apply for all the logic families, but I
will get to that later.)

Generally speaking, input and output voltage levels are assumed to be 0 V (low)
and +5 V (high). However, the actual input voltage required and the actual output
voltage provided by the gate are not set in stone. For example, the 74xx TTL series
will recognize a high input from 2.0 to 5 V, a low from 0 to 0.8 V, and will guarantee a
high output from 2.4 to 5 V and a low output from 0 to 0.4 V. However, for the CMOS
4000B series (VCC = +5 V), recognizable input voltages range from 3.3 to 5 V for high,
0 to 1.7 V for low, while guaranteed high and low output levels range from 4.9 to 5 V
and 0 to 0.1 V, respectively. Again, I will discuss specifics later in Section 12.4. For
now, let’s just get acquainted with what some of these ICs look like—see Figs. 12.12
and 12.13. [CMOS devices listed in the figures include 74HCxx, 4000(B), while TTL
devices shown include the 74xx, 74Fxx, 74LS.]
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12.2.3 Applications for a Single Logic Gate

Before we jump into the heart of logic gate applications that involve combining logic
gates to form complex decision-making circuits, let’s take a look at a few simple
applications that require the use of a single logic gate.

Enable/Disable Control

An enable/disable gate is a logic gate that acts to control the passage of a given wave-
form. The waveform, say, a clock signal, is applied to one of the gate’s inputs, while
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the other input acts as the enable/disable control lead. Enable/disable gates are used
frequently in digital systems to enable and disable control information from reaching
various devices. Figure 12.14 shows two enable/disable circuits; the first uses an
AND gate, and the second uses an OR gate. NAND and NOR gates are also fre-
quently used as enable gates.

In the upper part of the figure, an AND gate
acts as the enable gate. When the input enable
lead is made high, the clock signal will pass to
the output. In this example, the input enable is
held high for 4 µs, allowing 4 clock pulses
(where Tclk = 1 µs) to pass. When the input
enable lead is low, the gate is disabled, and no
clock pulses make it through to the output.

Below, an OR gate is used as the enable
gate. The output is held high when the input
enable lead is high, even as the clock signal is
varying. However, when the enable input is
low, the clock pulses are passed to the output.

Waveform Generation

By using the basic enable/disable function of a logic gate, as illustrated in the last
example, it is possible, with the help of a repetitive waveform generator circuit, to cre-
ate specialized waveforms that can be used for the digital control of sequencing cir-
cuits. An example waveform generator circuit is the Johnson counter, shown below.
The Johnson counter will be discussed in Section 12.8—for now let’s simply focus on
the outputs. In the figure below, a Johnson counter uses clock pulses to generate dif-
ferent output waveforms, as shown in the timing diagram. Outputs A, B, C, and D go
high for 4 µs (four clock periods) and are offset from each other by 1 µs. Outputs A�, B�,
C�, and D� produce waveforms that are complements of outputs A, B, C, and D, respec-
tively.

Now, there may be certain applications that require 4-µs high/low pulses applied
at a given time—as the counter provides. However, what would you do if the appli-
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cation required a 3-µs high waveform that begins at 2 µs and ends at 5 µs (relative to
the time scale indicated in the figure above)? This is where the logic gates come in
handy. For example, if you attach an AND gate’s inputs to the counter’s A and B out-
puts, you will get the desired 2- to 5-µs high waveform at the AND gate’s output:
from 1 to 2 µs the AND gate outputs a low (A = 1, B = 0), from 2 to 5 µs the AND gate
outputs a high (A = 1, B = 1), and from 5 to 6 µs the AND gate outputs a low (A = 0, 
B = 1). See the leftmost figure below.

Various other specialized waveforms can be generated by using different logic
gates and tapping different outputs of the Johnson shift counter. In the figure above
and to the left, six other possibilities are shown.

12.2.4 Combinational Logic

Combinational logic involves combining logic gates together to form circuits capa-
ble of enacting more useful, complex functions. For example, let’s design the logic
used to instruct a janitor-type robot to recharge itself (seek out a power outlet) only
when a specific set of conditions is met. The “recharge itself” condition is specified
as follows: when its battery is low (indicated by a high output voltage from a bat-
tery-monitor circuit), when the workday is over (indicated by a high output voltage
from a timer circuit), when vacuuming is complete (indicated by a high voltage out-
put from a vacuum-completion monitor circuit), and when waxing is complete
(indicated by a high output voltage from a wax-completion monitor circuit). Let’s
also assume that the power-outlet-seeking routine circuit is activated when a high is
applied to its input.

Two simple combinational circuits that perform the desired logic function for
the robot are shown in Fig. 12.17. The two circuits use a different number of gates
but perform the same function. Now, the question remains, how did we come up
with these circuits? In either circuit, it is not hard to predict what gates are needed.
You simply exchange the word and present within the conditional statement with
an AND gate within the logic circuit and exchange the word or present within the
conditional statement with an OR gate within the logic circuit. Common sense
takes care of the rest.
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However, when you begin designing more complex circuits, using intuition to fig-
ure out what kind of logic gates to use and how to join them together becomes
exceedingly difficult. To make designing combinational circuits easier, a special sym-
bolic language called Boolean algebra is used, which only works with true and false
variables. A Boolean expression for the robot circuit would appear as follows:

E = (B + T) + VW

This expression amounts to saying that if B (battery-check circuit’s output) or T (timer
circuit’s output) is true or V and W (vacuum and waxing circuit outputs) are true, than
E (enact power-outlet circuit input) is true. Note that the word or is replaced by the
symbol + and the word and is simply expressed in a way similar to multiplying two
variables together (placing them side-by-side or using a dot between variables). Also,
it is important to note that the term true in Boolean algebra is expressed as a 1, while
false is expressed as a 0. Here we are assuming positive logic, where true = high volt-
age. Using the Boolean expression for the robot circuit, we can come up with some of
the following results (the truth table in Fig. 12.17 provides all possible results):

E = (B + T) + VW
E = (1 + 1) + (1 � 1) = 1 + 1 = 1 (battery is low, time to sleep, finished with chores = go recharge).
E = (1 + 0) + (0 � 0) = 1 + 0 = 1 (battery is low = go recharge).
E = (0 + 0) + (1 � 0) = 0 + 0 = 0 (hasn’t finished waxing = don’t recharge yet).
E = (0 + 0) + (1 � 1) = 0 + 1 = 1 (has finished all chores = go recharge).
E = (0 + 0) + (0 � 0) = 0 + 0 = 0 (hasn’t finished vacuuming and waxing = don’t recharge yet).

The robot example showed you how to express AND and OR functions in
Boolean algebraic terms. But what about the negation operations (NOT, NAND,
NOR) and the exclusive operations (XOR, XNOR)? How do you express these in
Boolean terms? To represent a NOT condition, you simply place a line over the
NOT’ed variable or variables. For a NAND expression, you simply place a line over
an AND expression. For a NOR expression, you simply place a line over an OR
expression. For exclusive operations, you use the symbol �. Here’s a rundown of all
the possible Boolean expressions for the various logic gates.
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Like conventional algebra, Boolean algebra has a set of logic identities that can be
used to simplify the Boolean expressions and thus make circuits more compact.
These identities go by such names as the commutative law of addition, associate law of
addition, distributive law, etc. Instead of worrying about what the various identities are
called, simply make reference to the list of identities provided below and to the left.
Most of these identities are self-explanatory, although a few are not so obvious, as
you will see in a minute. The various circuits below and to the right show some of the
identities in action.

LOGIC IDENTITIES
1) A + B = B + A
2) AB = BA
3) A + (B + C) = (A + B) + C
4) A(BC) = (AB)C
5) A(B + C) = AB + AC
6) (A + B)(C + D) = AC + AD + BC + BD
7) 1� = 0
8) 0� = 1
9) A � 0 = 0
10) A � 1 = A
11) A + 0 = A
12) A + 1 = 1
13) A + A = A
14) AA = A
15) A�� = A
16) A + A� = 1
17) AA� = 0
18) �A��+��B� = A� B�
19) A�B� = A� + B�
20) A + A�B = A + B
21) A� + AB = A� + B
22) A � B = A�B + AB� = (A + B)(A�B�)
23) �A�����B� = AB + A� B�

EXAMPLE

Let’s find the initial Boolean expression for the circuit in Fig. 12.20 and then use the
logic identities to come up with a circuit that requires fewer gates.
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The circuit shown here is expressed by the following Boolean expression:

out = (A + B)B� + B� + BC

This expression can be simplified by using Identity 5:

(A + B)B� = AB� + BB�

This makes

out = AB� + BB� + B� + BC

Using Identities 17 (BB� = 0) and 11 (B + 0 = B), you get

out = AB� + 0 + B� + BC = AB� + BC

Factoring a B� from the preceding term gives

out = B�(A + 1) + BC

Using Identities 12 (A + 1 = 1) and 10, you get

out = B(1) + BC = B� + BC

Finally, using Identity 21, you get the simplified expression

out = B� + C

Notice that A is now missing.This means that the logic input at A has no
effect on the output and therefore can omitted. From the reduction, you
get the simplified circuit in the bottom part of the figure.

Dealing with Exclusive Gates (Identities 22 and 23)

Now let’s take a look at a couple of not so obvious logic identities I mentioned a sec-
ond ago, namely, those which involve the XOR (Identity 22) and XNOR (Identity 23)
gates. The leftmost section below shows equivalent circuits for the XOR gate. In the
lower two equivalent circuits, Identity 22 is proved by Boolean reduction. Equivalent
circuits for the XNOR gate are show in the rightmost section below. To prove Identity
23, you can simply invert Identity 22.

A

B

C

A+B

B

BC

B

C

A

logic level at A has
no effect on output

 B+C

(A+B)B+B+BC

not used

A

B

AB

AB

A

B

A
B

A    B = AB +AB

equivalent circuits

AB

A + B

A � B =
AA� + AB� + BA� + BB�
(AA� = BB� = 0)
= A(A� + B�) + B(A� + B�)
= A(A�B�) + B(A�B�)
= (A + B)(A�B�)

A
B

A    B = AB + AB

A

B

AB

AB

AB+AB

B
A

A    B = AB +AB

AB+AB

equivalent circuits

A � B =
A�B�(A + B)
= (A� + B�)(A + B)
= A�A + A�B + B�A + B�B
= A�B + AB�

FIGURE 12.20

FIGURE 12.21



Digital Electronics 329

De Morgan’s Theorem (Identities 18 and 19)

To simplify circuits containing NANDs and NORs, you can use an incredibly useful
theorem known as De Morgan’s theorem. This theorem allows you to convert an
expression having an inversion bar over two or more variables into an expression
having inversion bars over single variables only. De Morgan’s theorem (Identities 18
and 19) is as follows:

A��⋅��B� = A� + B� (2 variables) A�����B�����C� = A� + B� + C� (3 or more variables)
A��+��B� = A� � B� A��+��B��+��C� = A� � B� � C�

The easiest way to prove that these identities are correct is to use the figure below,
noting that the truth tables for the equivalent circuits are the same. Note the inversion
bubbles present on the inputs of the corresponding leftmost gates. The inversion bub-
bles mean that before inputs A and B are applied to the base gate, they are inverted
(negated). In other words, the bubbles are simplified expressions for NOT gates.

Why do you use the inverted-input OR gate symbol instead of a NAND gate sym-
bol? Or why would you use the inverted-input AND gate symbol instead of a NOR
gate symbol? This is a choice left up to the designer—whatever choice seems most
logical to use. For example, when designing a circuit, it may be easier to think about
ORing or ANDing inverted inputs than to think about NANDing or NORing inputs.
Similarly, it may be easier to create truth tables or work with Boolean expressions
using the inverted-input gate—it is typically easier to create truth tables and Boolean
expressions that do not have variables joined under a common inversion bar. Of
course, when it comes time to construct the actual working circuit, you probably will
want to convert to the NAND and NOR gates because they do not require additional
NOT gates at their inputs.

Bubble Pushing

A shortcut method for forming equivalent logic circuits, based on De Morgan’s theo-
rem, is to use what’s called bubble pushing.
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Bubble pushing involves the flowing tricks: First, change an AND gate to an OR
gate or change an OR gate to an AND gate. Second, add inversion bubbles to the
inputs and outputs where there were none, while removing the original bubbles.
That’s it. You can prove to yourself that this works by examining the corresponding
truth tables for the original gate and the bubble-pushed gate, or you can work out the
Boolean expressions using De Morgan’s theorem. Figure 12.23 shows examples of
bubble pushing.

Universal Capability of NAND and NOR Gates

NAND and NOR gates are referred to as universal gates because each alone can be
combined together with itself to form all other possible logic gates. The ability to cre-
ate any logic gate from NAND or NOR gates is obviously a handy feature. For exam-
ple, if you do not have an XOR IC handy, you can use a single multigate NAND gate
(e.g., 74HC00) instead. The figure below shows how to wire NAND or NOR gates
together to create equivalent circuits of the various logic gates.
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AND-OR-INVERT Gates (AOIs)

When a Boolean expression is reduced, the equation that is left over typically will be
of one of the following two forms: product-of-sums (POS) or sum-of-products (SOP). A
POS expression appears as two or more ORed variables ANDed together with two or
more additional ORed variables. An SOP expression appears as two or more ANDed
variables ORed together with additional ANDed variables. The figure below shows
two circuits that provide the same logic function (they are equivalent), but the circuit
to the left is designed to yield a POS expression, while the circuit to the right is
designed to yield a SOP expression.

In terms of design, which circuit is best, the one that implements the POS expres-
sion or the one that implements SOP expression? The POS design shown here would
appear to be the better choice because it requires fewer gates. However, the SOP
design is nice because it is easy to work with the Boolean expression. For example,
which Boolean expression above (POS or SOP) would you rather use to create a truth
table? The SOP expression seems the obvious choice. A more down-to-earth reason for
using an SOP design has to do with the fact that special ICs called AND-OR-INVERT
(AOI) gates are designed to handle SOP expressions. For example, the 74LS54 AOI IC
shown below creates an inverted SOP expression at its output, via two 2-input AND
gates and two 3-input AND gates NORed together. A NOT gate can be attached to the
output to get rid of the inversion bar, if desired. If specific inputs are not used, they
should be held high, as shown in the example circuit below and to the far left. AOI ICs
come in many different configurations—check out the catalogs to see what’s available.
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12.2.5 Keeping Circuits Simple (Karnaugh Maps)

We have just seen how using the logic identities can simplify a Boolean expression.
This is important because it reduces the number of gates needed to construct the logic
circuit. However, as I am sure you will agree, having to work out Boolean problems
in longhand is not easy. It takes time and ingenuity. Now, a simple way to avoid the
unpleasant task of using your ingenuity is to get a computer program that accepts a
truth table or Boolean expression and then provides you with the simplest expression
and perhaps even the circuit schematic. However, let’s assume that you do not have
such a program to help you out. Are you stuck with the Boolean longhand approach?
No. What you do is use a technique referred to as Karnaugh mapping. With this tech-
nique, you take a given truth table (or Boolean expression that can be converted into
a truth table), convert it into a Karnaugh map, apply some simple graphic rules, and
come up with the simplest (most of the time) possible Boolean expression for your
final circuit. Karnaugh mapping works best for circuits with three to four inputs—
below this, things usually do not require much thought anyway; beyond four inputs,
things get quite tricky. Here’s a basic outline showing how to apply Karnaugh map-
ping to a three-input system:

1. First, select a desired truth table. Let’s choose the one shown in Fig. 12.27. (If you
only have a Boolean expression, transform it into an SOP expression and use the
SOP expression to create the truth table—refer to Fig. 12.26 to figure out how this
is done.)

2. Next, translate the truth table into a Karnaugh map. A Karnaugh map is similar to
a truth table but has its variables represented along two axes. Translating the truth
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table into a Karnaugh map reduces the number of 1s and 0s needed to present the
information. Figure 12.27 shows how the translation is carried out.

3. After you create the Karnaugh map, you proceed to encircle adjacent cells of 1s
into groups of 2, 4, or 8. The more groups you can encircle, the simpler the final
equation will be. In other words, take all possible loops.

4. Now, identify the variables that remain constant within each loop, and write out
an SOP equation by ORing these variables together. Here, constant means that a
variable and its inverse are not present together within the loop. For example, the
top horizontal loop in Fig. 12.27 yields A� B� (the first term in the SOP expression),
since A�’s and B�’s inverses (A and B) are not present. However, the C variable is
omitted from this term because C and C� are both present.

5. The SOP expression you end up with is the simplest possible expression. With it
you can create your logic circuit. You may have to apply some bubble pushing to
make the final circuit practical, as shown in the figure below.

To apply Karnaugh mapping to four-input circuits, you apply the same basic steps
used in the three-input scheme. However, now you use must use a 4 × 4 Karnaugh
map to hold all the necessary information. Here is an example of how a four-input
truth table (or unsimplified four-variable SOP expression) can be mapped and con-
verted into a simplified SOP expression that can be used to create the final logic circuit:

Unsimplified SOP expression:

A� ⋅ B� ⋅ C� ⋅ D + A� ⋅ B� ⋅ C ⋅ D + A� ⋅ B ⋅ C� ⋅ D + A� ⋅ B ⋅ C ⋅ D�
+ A� ⋅ B ⋅ C ⋅ D + A ⋅ B� ⋅ C� ⋅ D + A ⋅ B� ⋅ C ⋅ D + A ⋅ B ⋅ C� ⋅ D + A ⋅ B ⋅ C ⋅ D = Y 

Simplified SOP expression and circuit

Here’s an example that uses an AOI IC to implement the final SOP expression
after mapping. I’ve thrown in variables other than the traditional A, B, C, and D just
to let you know you are not limited to them alone. The choice of variables is up to you
and usually depends on the application.
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Other Looping Configurations

Here are examples of other looping arrangements used with 4 × 4 Karnaugh maps:

12.3 Combinational Devices

Now that you know a little something about how to use logic gates to enact functions
represented within truth tables and Boolean expressions, it is time to take a look at
some common functions that are used in the real world of digital electronics. As you
will see, these functions are usually carried out by an IC that contains all the neces-
sary logic.

A word on IC part numbers before I begin. As with the logic gate ICs, the combi-
national ICs that follow will be of either the 4000 or 7400 series. It is important to note
that an original TTL IC, like the 74138, is essentially the same device (same pinouts
and function—usually, but not always) as its newer counterparts, the 74F138,
74HC128 (CMOS), 74LS138, etc. The practical difference resides in the overall perfor-
mance of the device (speed, power dissipation, voltage level rating, etc.). I will get
into these gory details in a bit.

12.3.1 Multiplexers (Data Selectors) and Bilateral Switches

Multiplexers or data selectors act as digitally controlled switches. (The term data selec-
tor appears to be the accepted term when the device is designed to act like an SPDT
switch, while the term multiplexer is used when the throw count of the “switch”
exceeds two, e.g., SP8T. I will stick with this convention, although others may not.) A
simple 1-of-2 data selector built from logic gates is shown in Fig. 12.32. The data
select input of this circuit acts to control which input (A or B) gets passed to the out-
put: When data select is high, input A passes while B is blocked. When data select is
low, input B is passed while B is blocked. To understand how this circuit works, think
of the AND gates as enable gates.
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There are a number of different types of data selectors that come in IC form. For
example, the 74LS157 quad 1-of-2 data selector IC, shown in Fig. 12.32, acts like an
electrically controlled quad SPDT switch (or if you like, a 4PDT switch). When its
select input is set high (1), inputs A1, A2, A3, and A4 are allowed to pass to outputs Q1,
Q2, Q3, and Q4. When its select input is low (0), inputs B1, B2, B3, and B4 are allowed to
pass to outputs Q1, Q2, Q3, and Q4. Either of these two conditions, however, ultimately
depends on the state of the enable input. When the enable input is low, all data input
signals are allowed to pass to the output; however, if the enable is high, the signals
are not allowed to pass. This type of enable control is referred to as active-low enable,
since the active function (passing the data to the output) occurs only with a low-level
input voltage. The active-low input is denoted with a bubble (inversion bubble),
while the outer label of the active-low input is represented with a line over it. Some-
times people omit the bubble and place a bar over the inner label. Both conventions
are used commonly.

Figure 12.33 shows a 4-line-to-1-line multiplexer built with logic gates. This cir-
cuit resembles the 2-of-1 data selector shown in Fig. 12.32 but requires an additional
select input to provide four address combinations.
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In terms of ICs, there are multiplexers of various input line capacities. For exam-
ple, the 74151 8-line-to-1-line multiplexer uses three select inputs (S0, S1, S2) to choose
among 1 of 8 possible data inputs (I0 to I7) to be funneled to the output. Note that this
device actually has two outputs, one true (pin 5) and one inverted (pin 6). The active-
low enable forces the true output low when set high, regardless of the inputs.

To create a larger multiplexer, you combine two smaller multiplexers together. For
example, Fig. 12.34 shows two 8-line-to-1-line 74HC151s combined to create a 16-
line-to-1-line multiplexer. Another alternative is to use a 16-line-to-1-line multiplexer
IC like the 74HC150 shown below. Check the catalogs to see what other kinds of mul-
tiplexers are available.

Finally, let’s take a look at a very useful device called a bilateral switch. An exam-
ple bilateral switch IC is the 4066, shown to the far left in Fig. 12.32. Unlike the mul-
tiplexer, this device merely acts as a digitally controlled quad SPST switch or quad
transmission gate. Using a digital control input, you select which switches are on and
which switches are off. To turn on a given switch, apply a high level to the corre-
sponding switch select input; otherwise, keep the select input low.

Later in this chapter you come across analog switches and multiplexers. These
devices use digital select inputs to control analog signals. Analog switches and mul-
tiplexers become important when you start linking the digital world to the analog
world.

12.3.2 Demultiplexers (Data Disctributors) and Decoders

A demultiplexer (or data distributor) is the opposite of a multiplexer. It takes a single
data input and routes it to one of several possible outputs. A simple four-line demul-
tiplexer built from logic gates is shown in Fig. 12.35 left. To select the output (A, B, C,
or D) to which you want to send the input signal (applied at E), you apply logic lev-
els to the data select inputs (S0, S1), as shown in the truth table. Notice that the unse-
lected outputs assume a high level, while the selected output varies with the input
signal. An IC that contains two functionally separate four-line demultiplexers is the
74HC139, shown in Fig. 12.35 right. If you need more outputs, check out the 75xx154
16-line demultiplexer. This IC uses four data select inputs to choose from 1 of 16 pos-
sible outputs. Check out the catalogs to see what other demultiplexers exist.
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A decoder is somewhat like a demultiplexer, but it does not route input data to a
specific output via data select inputs. Instead, it simply uses the data select inputs to
choose which output (or outputs) among many are to be made high or low. The num-
ber of address inputs, the number of outputs, and the active state of the selected out-
put vary from decoder to decoder. The variance is of course based on what the
decoder is designed to do.

For example, the 74LS138 1-of-8 decoder shown in Fig. 12.36 uses a 3-bit address
input to select which of 8 outputs will be made low—all other outputs are held high.
Like the demultiplexer in Fig. 12.35, this decoder has active-low outputs.

Now what exactly does it mean to say an output is an active-low output? It
simply means that when an active-low output is selected, it is forced to a low logic
state; otherwise, it is held high. Active-high outputs behave in the opposite man-
ner. An active-low output is usually indicated with a bubble, although often it is
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indicated with a bared variable within the IC logic symbol—no bubble included.
Active-high outputs have no bubbles. Both active-low and active-high outputs are
equally common among ICs. By placing a load (e.g., warning LED) between +VCC

and an active-low output, you can sink current through the load and into the
active-low output when the output is selected. By placing a load between an
active-high output and ground, you can source current from the active-high out-
put and sink it through the load when the output is selected. There are of course
limits to how much current an IC can source or sink. I will discuss these limits in
Section 12.4, and I will present various schemes used to drive analog loads in Sec-
tion 12.10.

Now let’s get back to the 74LS138 decoder and discuss the remaining enable
inputs (E�0, E�1, E2). For the 74LS138 to “decode,” you must make the active-low inputs
E�0 and E�1 low while making the active-high input E2 high. If any other set of enable
inputs is applied, the decoder is disabled, making all active-low outputs high regard-
less of the selected inputs.

Other common decoders include the 7442 BCD-to-DEC (decimal) decoder, the
74154 1-of-16 (Hex) decoder, and the 7447 BCD-to-seven-segment decoder shown
below. Like the preceding decoder, these devices also have active-low outputs.
The 7442 uses a binary-coded decimal input to select 1 of 10 (0 through 9) possi-
ble outputs. The 74154 uses a 4-bit binary input to address 1 of 16 (or 0 of 15) out-
puts, making that output low (all others high), provided the enables are both
set low.

Now the 7447 is a bit different from the other decoders. With this device, more
than one output can be driven low at a time. This is important because it allows the
7447 to drive a seven-segement LED display; to create different numbers requires
driving more than one LED segment at a time. For example, in Fig. 12.38, when the
BCD number for 5 (0101) is applied to the 7447’s inputs, all outputs except b� and c� go
low. This causes LED segments a, d, e, f, and g to light up—the 7447 sinks current
through these LED segments, as indicated by the internal wiring of the display and
the truth table.
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The 7447 also comes with a lamp test active-low input (L�T�) that can be used to
drive all LED segments at once to see if any of the segments are faulty. The ripple
blanking input (R�B�I�) and ripple blanking output (R�B�O�) can be used in multistage dis-
play applications to suppress a leading-edge and/or trailing-edge zero in a multi-
digit decimal. For example, using the ripple blanking inputs and outputs, it is
possible to take an 8-digit expression like 0056.020 and display 56.02, suppressing the
two leading zeros and the one trailing zero. Leading-edge zero suppression is
obtained by connecting the ripple blanking output of a decoder to the ripple blank-
ing input of the next lower-stage device. The most significant decoder stage should
have its ripple blanking input grounded. A similar procedure is used to provide auto-
matic suppression of trailing zeros in the fractional part of the decimal.

12.3.3 Encoders and Code Converters

Encoders are the opposite of decoders. They are used to generate a coded output
from a single active numeric input. To illustrate this in a simple manner, let’s take a
look at the simple decimal-to-BCD encoder circuit shown below.

In this circuit, normally all lines are held high by the pull-up resistors connected to
+5 V. To generate a BCD output that is equivalent to a single selected decimal input, the
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switch corresponding to that decimal is closed. (The switch acts as an active-low
input.) The truth table in Fig. 12.39 explains the rest.

Figure 12.40 shows a 74LS147 decimal-to-BCD (10-line-to-4-line) priority encoder IC.
The 74LS147 provides the same basic function as the circuit shown in Fig. 12.39, but it has
active-low outputs. This means that instead of getting an LLHH output when “3” is
selected, as in the previous encoder, you get HHLL. The two outputs represent the same
thing (“3”); one is expressed in positive true logic, and the other (the 74LS147) is
expressed in negative true logic. If you do not like negative true logic, you can slap
inverters on the outputs of the 74LS147 to get positive true logic. The choice to use posi-
tive or negative true logic really depends on what you are planning to drive. For exam-
ple, negative true logic is useful when the device that you wish to drive uses active-low
inputs.

Another important difference between the two encoders is the term priority that is
used with the 74LS147 and not used with the encoder in Fig. 12.39. The term priority
is applied to the 74LS147 because this encoder is designed so that if two or more
inputs are selected at the same time, it will only select the larger-order digit. For
example, if 3, 5, and 8 are selected at the same time, only the 8 (negative true BCD
LHHH or 0111) will be output. The truth table in Fig. 12.40 demonstrates this—look
at the “don’t care” or “X” entries. With the nonpriority encoder, if two or more inputs
are applied at the same time, the output will be unpredictable.

The circuit shown in Fig. 12.41 provides a simple illustration of how an encoder
and a decoder can be used together to drive an LED display via a 0-to-9 keypad. The
74LS147 encodes a keypad’s input into BCD (negative logic). A set of inverters then
converts the negative true BCD into positive true BCD. The transformed BCD is then
fed into a 7447 seven-segment LED display decoder/driver IC.
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Figure 12.42 shows a 74148 octal-to-binary priory encoder IC. It is used to
transform a specified single octal input into a binary 3-bit output code. As with the
74LS147, the 74148 comes with a priority feature, meaning, again, that if two or
more inputs are selected at the same time, only the higher order number is
selected.

A high applied to the input enable (E�I�) forces all outputs to their inactive (high)
state and allows new data to settle without producing erroneous information at
the outputs. A group signal output (GG�S�) and an enable output (EE�O�) are also pro-
vided to allow for system expansion. The G�S� output is active level low when any
input is low (active). The EE�O� output is low (active) when all inputs are high. Using
the output enable along with the input enable allows priority coding of N input
signals. Both EE�O� and GG�S� are active high when the input enable is high (device 
disabled).

Figure 12.43 shows a 74184 BCD-to-binary converter (encoder) IC. This device has
eight active-high outputs (Y1–Y8). Outputs Y1 to Y5 are outputs for regular BCD-to-
binary conversion, while outputs Y6 to Y8 are used for a special BDC code called nine’s
complement and ten’s complement. The active-high BCD code is applied to inputs A
through E. The G� input is an active-low enable input.
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A sample 6-bit BCD-to-binary converter and a sample 8-bit BCD-to-binary con-
verter that use the 74184 are shown to the right in Fig. 12.43. In the 6-bit circuit, since
the LSB of the BCD input is always equal to the LSB of the binary output, the con-
nection is made straight from input to output. The other BCD bits are applied directly
to inputs A through E. The binary weighing factors for each input are A = 2, B = 4, 
C = 8, D = 10, and E = 20. Because only 2 bits are available for the MSD BCD input, the
largest BCD digit in that position is 3 (binary 11). To get a complete 8-bit BCD con-
verter, you connect two 74184s together, as shown to the far right in Fig. 12.43.

Figure 12.44 shows a 74185 binary-to-BCD converter (encoder). It is essentially the
same as the 74184 but in reverse. The figure shows 6-bit and 8-bit binary-to-BCD con-
verter arrangements.

12.3.4 Binary Adders

With a few logic gates you can create a circuit that adds binary numbers. The
mechanics of adding binary numbers is basically the same as that of adding decimal
numbers. When the first digit of a two-digit number is added, a 1 is carried and
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added to the next row whenever the count exceeds binary 2 (e.g., 1 + 1 = 10, or = 0
carry a 1). For numbers with more digits, you have multiple carry bits. To demon-
strate how you can use logic gates to perform basic addition, start out by considering
the half-adder circuits below. Both half-adders shown are equivalent; one simply
uses XOR/AND logic, while the other uses NOR/AND logic. The half-adder adds
two single-bit numbers A and B and produces a 2-bit number; the LSB is represented
as Σ0, and the MSB or carry bit is represented as Cout.

The most complicated operation the half-adder can do is 1 + 1. To perform addi-
tion on a two-digit number, you must attach a full-adder circuit (shown in Fig. 12.45)
to the output of the half-adder. The full-adder has three inputs; two are used to input
the second digits of the two binary numbers (A1, B1), while the third accepts the carry
bit from the half-adder (the circuit that added the first digits, A0 and B0, of the two
numbers). The two outputs of the full-adder will provide the 2d-place digit sum Σ1

and another carry bit that acts as the 3d-place digit of the final sum. Now, you can
keep adding more full-adders to the half-adder/full-adder combination to add larger
number, linking the carry bit output of the first full-adder to the next full-adder, and
so forth. To illustrate this point, a 4-bit adder is shown in Fig. 12.45.

There are a number of 4-bit full-adder ICs available such as the 74LS283 and 4008.
These devices will add two 4-bit binary number and provide an additional input
carry bit, as well as an output carry bit, so you can stack them together to get 8-bit, 12-
bit, 16-bit, etc. adders. For example, the figure below shows an 8-bit adder made by
cascading two 74LS283 4-bit adders.
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12.3.5 Binary Adder/Subtractor

Figure 12.47 shows how two 74LS283 4-bit adders can be combined with an XOR
array to yield an 8-bit 2’s complement adder/subtractor. The first number X is
applied to the X0-X7 inputs, while the second number Y is applied to the Y0-Y7

inputs.
To add X and Y, the add/subtract switch is thrown to the add position, making

one input of all XOR gates low. This has the effect of making the XOR gates appear
transparent, allowing Y values to pass to the 74LS283s’ B inputs (X values are passed
to the A inputs). The 8-bit adder then adds the numbers and presents the result to the
Σ outputs.

To subtract Y from X, you must first convert Y into 1’s complement form; then you
must add 1 to get Y into 2’s complement form. After that you simply add X to the 2’s
complemented form of Y to get X − Y. When the add/subtract switch is thrown to the
subtract position, one input to each XOR gate is set high. This causes the Y bits that
are applied to the other XOR inputs to become inverted at the XOR outputs—you
have just taken the 1’s complement of Y. The 1’s complement bits of Y are then pre-
sented to the inputs of the 8-bit adder. At the same time, Cin of the left 74LS283 is set
high via the wire (see figure) so that a 1 is added to the 1’s complement number to
yield a 2’s complement number. The 8-bit adder then adds X and the 2’s complement
of Y together. The final result is presented at the Σ outputs. In the figure, 76 is sub-
tracted from 28.

12.3.6 Arithmetic/Logic Units (ALUs)

An arithmetic/logic unit (ALU) is a multipurpose integrated circuit capable of
performing various arithmetic and logic operations. To choose a specific op-
eration to be performed, a binary code is applied to the IC’s mode select inputs.
The 74181, shown in Fig. 12.48, is a 4-bit ALU that provides 16 arithmetic and 16
logic operations.

To select an arithmetic operation, the 74181’s mode control input (M) is set low.
To select a logic operation, the mode control input is set high. Once you have
decided whether you want to perform a logic or arithmetic operation, you apply a
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4-bit code to the mode select inputs (S0, S1, S2, S3) to specify which specific opera-
tion, as indicated within the truth table, is to be performed. For example, if
you select S3 = 1, S2 = 1, S1 = 1, S0 = 0, while M = 1, then you get F0 = A0 + B0, F1 =
A1 + B1, F2 = A2 + B2, F3 = A3 + B3. Note that the + shown in the truth table does not
represent addition; it is used to represent the OR function—for addition, you use
“plus.” Carry-in (C�N) and carry-out (CN + 4) leads are provided for use in arithmetic
operations. All arithmetic results generated by this device are in 2’s complement
notation.

12.3.7 Comparators and Magnitude Comparator ICs

A digital comparator is a circuit that accepts two binary numbers and determines
whether the two numbers are equal. For example, the figure below shows a 1-bit and
a 4-bit comparator. The 1-bit comparator outputs a high (1) only when the two 1-bit
numbers A and B are equal. If A is not equal to B, then the output goes low (0). The 4-
bit is basically four 1-bit comparators in one. When all individual digits of each num-
ber are equal, all XOR gates output a high, which in turn enables the AND gate,
making the output high. If any two corresponding digits of the two numbers are not
equal, the output goes low.

Mode select Logic functions Arithmetic operations
S3 S2 S1 S0 (M = 1) (M = 0, C�n = 1)
0 0 0 0 F = A� F = A
0 0 0 1 F = A��+��B� F = A + B
0 0 1 0 F = A�B F = A + B�
0 0 1 1 F = 0 F = minus 1 (2’s comp.)
0 1 0 0 F = A�B� F = A plus AB�
0 1 0 1 F = B� F = (A + B) plus AB�
0 1 1 0 F = A � B F = A minus B minus 1
0 1 1 1 F = AB� F = AB� minus 1
1 0 0 0 F = A� + B F = A plus AB
1 0 0 1 F = A�����B� F = A plus B
1 0 1 0 F = B F = (A + B�) plus AB
1 0 1 1 F = AB F = AB minus 1
1 1 0 0 F = 1 F = A plus A
1 1 0 1 F = A + B F = (A + B) plus A
1 1 1 0 F = A + B F = (A + B�) plus A
1 1 1 1 F = A F = A minus 1
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Now, say you want to know which number, A or B, is larger. The circuits in Fig.
12.49 will not do the trick. What you need instead is a magnitude comparator like the
74HC85 shown in Fig. 12.50. This device not only tells you if two numbers are equal;
it also tells you which number is larger. For example, if you apply a 1001 (910) to the
A3A2A1A0 inputs and a second number 1100 (1210) to the B3B2B1B0 inputs, the A < B out-
put will go high (the other two outputs, A > B and A = B, will remain low). If A and B
were equal, the A = B output would have gone high, etc. If you wanted to compare a
larger number, say, two 8-bit numbers, you simply cascade two 74HC85’s together, as
shown to the right in Fig. 12.50. The leftmost 74HC85 compares the lower-order bits,
while the rightmost 74HC85 compares the higher-order bits. To link the two devices
together, you connect the output of the lower-order device to the expansion inputs of
the higher-order device, as shown. The lower-order device’s expansion inputs are
always set low (IA < B), high (IA = B), low (IA > B).

12.3.8 Parity Generator/Checker

Often, external noise will corrupt binary information (cause a bit to flip from one
logic state to the other) as it travels along a conductor from one device to the next. For
example, in the 4-bit system shown in Fig. 12.51, a BCD 4 (0100) picks up noise and
becomes 0101 (or 5) before reaching its destination. Depending on the application,
this type of error could lead to some serious problems.

To avoid problems caused by unwanted data corruption, a parity generator/
checker system, like the one shown in Fig. 12.51, can be used. The basic idea is to add an
extra bit, called a parity bit, to the digital information being transmitted. If the parity bit
makes the sum of all transmitted bits (including the parity bit) odd, the transmitted infor-
mation is of odd parity. If the parity bit makes the sum even, the transmitted information
is of even parity. A parity generator circuit creates the parity bit, while the parity checker
on the receiving end determines if the information sent is of the proper parity. The type
of parity (odd or even) is agreed to beforehand, so the parity checker knows what to look
for. The parity bit can be placed next to the MSB or the LSB, provided the device on the
receiving end knows which bit is the parity bit and which bits are the data. The arrange-
ment shown in Fig. 12.51 is designed with an even-parity error-detection system.
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If you want to avoid building parity generators and checkers from scratch, use a
parity generator/checker IC like the 74F280 9-bit odd-even parity generator/checker
shown below. To make a complete error-detection system, two 74F280s are used—one
acts as the parity generator; the other acts as the parity checker. The generator’s inputs
A through H are connected to the eight data lines of the transmitting portion of the cir-
cuit. The ninth input (I) is grounded when the device is used as a generator. If you want
to create an odd-parity generator, you tap the Σodd output; for even parity, you tap Σeven.
The 74F280 checker taps the main line at the receiving end and also accepts the parity
bit line at input I. The figure below shows an odd-parity error-detection system used
with an 8-bit system. If an error occurs, a high (1) is generated at the Σodd output.

12.3.9 A Note on Obsolescence and the Trend 
Toward Microcontroller Control

You have just covered most of the combinational devices you will find discussed in
textbooks and find listed within electronic catalogs. Many of these devices are still
used. However, some devices such as the binary adders and code converters are
becoming obsolete.

Today, the trend is to use software-controlled devices such as microprocessors
and microcontrollers to carry out arithmetic operations and code conversions. Before
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you attempt to design any logic circuit, I suggest jumping to Section 12.12. In that sec-
tion, pay close attention to microcontrollers. These devices are quite amazing. They
are essentially microprocessors but are significantly easier to program and are easier
to interface with other circuits and devices.

Microcontrollers can be used to collect data, store data, and perform logical oper-
ations using the input data. They also can generate output signals that can be used
to control displays, audio devices, stepper motors, servos, etc. The specific functions
a microcontroller is designed to perform depend on the program you store in its
internal ROM-type memory. Programming the microcontroller typically involves
simply using a special programming unit provided by the manufacturer. The pro-
gramming unit usually consists of a special prototyping platform that is linked to a
PC (via a serial or parallel port) that is running a host program. In the host program,
you typically write out a program in a high-level language such as C, or some other
specialized language designed for a certain microcontroller, and then, with the press
of a key, the program is converted into machine language (1s and 0s) and down-
loaded into the microcontroller’s memory.

In many applications, a single microcontroller can replace entire logic circuits
comprised of numerous discrete components. For this reason, it is tempting to skip
the rest of the sections of this chapter and go directly to the section on microcon-
trollers. However, there are three basic problems with this approach. First, if you are
a beginner, you will miss out on many important principles behind digital control
that are most easily understood by learning how the discrete components work. Sec-
ond, many digital circuits that you can build simply do not require the amount of
sophistication a microcontroller provides. Finally, you may feel intimidated by the
electronics catalogs that list every conceivable component available, be it obsolete or
not. Knowing what’s out there and knowing what to avoid are also important parts
of the learning process.

12.4 Logic Families

Before moving on to sequential logic, let’s touch on a few practical matters regard-
ing the various logic families available and what kind of operating characteristics
these families have. In this section you will also encounter unique logic gates that
have open-collector output stages and logic gates that have Schmitt-triggered
inputs.

The key ingredient within any integrated logic device, be it a logic gate, a mul-
tiplexer, or a microprocessor, is the transistor. The kinds of transistors used within
the integrated circuit, to a large extend, specify the type of logic family. The two
most popular transistors used in ICs are bipolar and MOSFET transistors. In gen-
eral, ICs made from MOSFET transistors use less space due to their simpler con-
struction, have very high noise immunity, and consume less power than equivalent
bipolar transistor ICs. However, the high input impedance and input capacitance
of the MOSFET transistors (due to their insulated gate leads) results in longer time
constants for transistor on/off switching speeds when compared with bipolar
gates and therefore typically result in a slower device. Over years of development,
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however, the performance gap between these two technologies has narrowed
considerably.

Both the bipolar and MOSFET logic families can be divided into a number of
subclasses. The major subclasses of the bipolar family include TTL (transistor-
transistor logic), ECL (emitter-coupled logic), and IIL or I2L (integrated-injection
logic). The major subclasses of the MOSFET logic include PMOS (P-channel 
MOSFET logic), NMOS (N-channel MOSFET logic), and CMOS (complementary
MOSFET logic). CMOS uses both NMOS and PMOS technologies (it uses both 
N-channel and P-channel MOSFETs). The two most popular technologies are 
TTL and CMOS, while the other technologies are typically used in large-scale 
integration devices, such as microprocessors and memories. There are new tech-
nologies popping up all the time, which yield faster, more energy-efficient de-
vices. Some examples include BiCMOS, GaAS, SOS, and Josephen junction
technologies.

As you have already learned, TTL and CMOS devices are grouped into functional
categories that get placed into either the 7400 series [74F, 74LS, 74HC (CMOS), etc.] or
4000 CMOS series (or the improved 4000B series). Now, another series you will run
into is the 5400 series. This series is essentially equivalent to the 7400 series (same
pinouts, same basic logic function), but it is a more expansive chip because it is
designed for military applications that require increased supply voltage tolerances
and temperature tolerances. For example, a 7400 IC typically has a supply voltage
range from 4.75 to 5.25 V with a temperature range from 0 to 70°C, while a 5400 IC
typically will have a voltage range between 4.5 and 5.5 V and a temperature range
from −55 to 125°C.

12.4.1 TTL Family of ICs

The original TTL series, referred to as the standard TTL series (74xx), was developed
early in the 1960s. This series is still in use, even though its overall performance is
inferior to the newer line of TTL devices, such as the 74LSxx, 74ALSxx, and 74Fxx.
The internal circuitry of a standard TTL 7400 NAND gate, along with a description of
how it works, is provided next.

TTL (Transistor-Transistor Logic)

BIPOLAR LOGIC FAMILY

Standard TTL (74)
Low-power TTL (74L)
Schottky TTL (74S)
Low-power Schottky (74LS)
Advanced Schottky (74AS)
Advanced low-power Schottky (74ALS)
Fast TTL (74F)

ECL (Emitter-Coupled Logic)

IIL or I2L (Integrated-Injection Logic)

MOS LOGIC FAMILY

PMOS (P-Channel MOSFET)

NMOS (N-channel MOSFET)

CMOS (Complementary MOSFET)

Standard CMOS (4000 (B))
High-speed CMOS (74HC)
High-speed CMOS TTL compatible (74HCT)
Advanced CMOS logic (74AC)
Advanced CMOS TTL compatible (74ACT)
Low-voltage CMOS (74LV)OTHERS

BiCMOS (Combination of bipolar and CMOS)
GaAs (gallium arsenide) technology
SOS (silicon-on-sapphire) technology
Josephen junction technology

ECL III
ECL 100K
ECL 100KH
ECL 10K

FIGURE 12.53
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The TTL NAND gate is broken up into three basic sections: multiemitter
input, control section, and totem-pole output stage. In the multiemitter
input section, a multiemitter bipolar transistor Q1 acts like a two-input
AND gate, while diodes D1 and D2 act as negative clamping diodes used to
protect the inputs from any short-term negative input voltages that could
damage the transistor. Q2 provides control and current boosting to the
totem-pole output stage; when the output is high (1), Q4 is off (open) and
Q3 is on (short). When the output is low (0), Q4 is on and Q3 is off. Because
one or the other transistor is always off, the current flow from VCC to
ground in that section of the circuit is minimized.The lower figures show
both a high and low output state, along with the approximate voltages
present at various locations. Notice that the actual output voltages are not
exactly 0 or +5V—a result of internal voltage drops across resistor, transis-
tor, and diode. Instead, the outputs are around 3.4V for high and 0.3V for
low. As a note, to create, say, an eight-input NAND gate, the multiemitter
input transistor would have eight emitters instead of just two as shown.

A simple modification to the standard TTL series was made early on by reducing all
the internal resistor values in order to reduce the RC time constants and thus increase
the speed (reduce propagation delays). This improvement to the original TTL series
marked the 74H series. Although the 74H series offered improved speed (about twice
as fast) over the 74 series, it had more than double the power consumption. Later, the
74L series emerged. Unlike the 74H, the 74L took the 74 and increased all internal resis-
tances. The net effect lead to a reduction in power but increased propagation delay.

A significant improvement in speed within the TTL line emerged with the devel-
opment of the 74Sxx series (Schottky TTL series). The key modifications involved
placing Schottky diodes across the base-to-collector junctions of the transistors. These
Schottky diodes eliminated capacitive effects caused by charge buildup in the tran-
sistor’s base region by passing the charge to the collector region. Schottky diodes
were the best choice because of their inherent low charge buildup characteristics. The
overall effect was an increase in speed by a factor of 5 and only a doubling in power.

Continually over time, by using different integration techniques and increasing
the values of the internal resistors, more power-efficient series emerged, like the low-
power Schottky 74LS series, with about one-third the power dissipation of the 74S.
After the 74LS, the advanced-low-power Schottky 74ALS series emerged, which had
even better performance. Another series developed around this time was the 74F
series, or FAST logic, which used a new process of integration called oxide isolation
(also used in the ALS series) that led to reduced propagation delays and decreased
the overall size.
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Today you will find many of the older series listed in electronics catalogs. Which
series you choose ultimately depends on what kind of performance you are looking for.

12.4.2 CMOS Family of ICs

While the TTL series was going through its various transformations, the CMOS series
entered the picture. The original CMOS 4000 series (or the improved 4000B series)
was developed to offer lower power consumption than the TTL series of devices—a
feature made possible by the high input impedance characteristics of its MOSFET
transistors. The 4000B series also offered a larger supply voltage range (3 to 18 V),
with minimum logic high = 2⁄3VDD, and maximum logic low = 1⁄3VDD. The 4000B series,
though more energy efficient than the TTL series, was significantly slower and more
susceptible to damage due to electrostatic discharge. The figure below shows the
internal circuitry of CMOS NAND, AND, and NOR gates. To figure out how the gates
work, apply high (logic 1) or low (logic 0) levels to the inputs and see which transis-
tor gates turn on and which transistor gates turn off.

A further improvement in speed over the original 4000B series came with the
introduction of the 40H00 series. Although this series was faster than the 4000B
series, it was not quite as fast as the 74LS TTL series. The 74C CMOS series also
emerged on the scene, which was designed specifically to be pin-compatible with the
TTL line. Another significant improvement in the CMOS family came with the devel-
opment of the 74HC and the 74HCT series. Both these series, like the 74C series, were
pin-compatible with the TTL 74 series. The 74HC (high-speed CMOS) series had the
same speed as the 74LS as well as the traditional CMOS low-power consumption.
The 74HCT (high-speed CMOS TTL compatible) series was developed to be inter-
changeable with TTL devices (same input/output voltage level characteristics). The
74HC series is very popular today. Still further improvements in 74HC/74HCT series
led to the advanced CMOS logic (74AC/74ACT) series. The 74AC (advanced CMOS)
series approached speeds comparable with the 74F TTL series, while the 74ACT
(advanced CMOS TTL compatible) series was designed to be TTL compatible.

12.4.3 Input/Output Voltages and Noise Margins

The exact input voltage levels required for a logic IC to perceive a high (logic 1) or
low (logic 0) input level differ between the various logic families. At the same time,
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the high and low output levels provided by a logic IC vary among the logic families.
For example, the figure below shows valid input and output voltage levels for both
the 74LS (TTL) and 74HC (CMOS) families.

In Fig. 12.56, VIH represents the valid voltage range that will be interpreted as a
high logic input level. VIL represents the valid voltage range that will be interpreted
as a low logic input level. VOL represents the valid voltage range that will be guaran-
teed as a low logic output level, while VOH represents the valid voltage range that will
be guaranteed as a high logic output level.

As you can see from Fig. 12.56, if you connect the output of a 74HC device to the
input of a 74LS device, there is no problem—the output logic levels of the 74HC are
within the valid input range of the 74LS. However, if you turn things around, driv-
ing a 74HC device’s inputs from a 74LS’s output, you have problems—a high out-
put level from the 74LS is too small to be interpreted as a high input level for the
74HC. I will discuss tricks used to interface the various logic families together in a
moment.

12.4.4 Current Ratings, Fanout, and Propagation Delays

Logic IC inputs and outputs can only sink or source a given amount of current. IIL

is defined as the maximum low-level input current, IIH as the maximum high-level
input current, IOH as the maximum high-level output current, and IOL as the maxi-
mum low-level output current. As an example, a standard 74xx TTL gate may have
an IL = −1.6 mA and IIH = 40 µA while having an IOL = 16 mA and IOH = −400 µA. The
negative sign means that current is leaving the gate (the gate is acting as a source),
while a positive sign means that current in entering the gate (the gate is acting as
sink).

The limit to how much current a device can sink or source determines the size of
loads that can be attached. The term fanout is used to specify the total number of gates
that can be driven by a single gate of the same family without exceeding the current
rating of the gate. The fanout is determined by taking the smaller result of IOL/IIL or
IOH/IIH. For the standard 74 series, the fanout is 10 (16 mA/1.6 mA). For the 74LS
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series, the fanout is around 20; for the 74F, it is around 33; and for the 7HC, it is
around 50.

If you apply a square pulse to the input of a logic gate, the output signal will
experience a sloping rise time and fall time, as shown in the graph in Fig. 12.57. The
rise time (tr) is the length of time it takes for a pulse to rise from 10 to 90 percent of
its high level (e.g., 5 V = high: 0.5 V = 10%, 4.5 V = 90%). The fall time tf is the length
of time it takes for a high level to fall from the 90 to 10 percent. The rise and fall
times, however, are not as significant when compared with propagation delays
between input transition and output response. Propagation delay results from the
limited switching speeds of the internal transistors within the logic device. The
low-to-high propagation delay TPHL is the time it takes for the output of a device to
switch from low to high after the input transition. The high-to-low propagation
delay TPLH is the time it takes for the output to switch from high to low after the
input transition. When designing circuits, it is important to take into account these
delays, especially when you start dealing with sequential logic, where timing is
everything. Figures 12.58 and 12.59 provide typical propagation delays for various
TTL and CMOS devices. Manufacturers will provide more accurate propagation
information in their data sheets.

12.4.5 A Detailed Look at the Various TTL and CMOS Subfamilies

The following information, shown in Figs. 12.58 and 12.59, especially the data per-
taining to propagation delays and current ratings, represents typical values for a given
logic series. For more accurate data about a specific device, you must consult the
manufacturer’s literature. In other words, only use the provided information as a
rough guide to get a feeling for the overall performance of a given logic series.
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series) by eliminating charge build-up at base region
of transistors (a build-up of charge takes time to
dissipate, thus causing propagation delay).

(Schottky) VCC5V

2.7V

2.0V

0.8V
0.5V

Input/Output voltage levels Comments

xx74LS00x

74LS TTL series

Quad 2-input NAND

A very popular TTL series used today.  Improved
power dissipation over the 74Sxx series, but isn't as
fast.

(Low-power
Schottky)

V
CC

5V

2.7V

2.0V

0.8V
0.4V

Input/Output voltage levels Comments

xx74ALS00x

74ALS TTL series

Quad 2-input NAND

Further improvement of the 74LSxx series;
propagation delay and power dissipation are reduced.
Rapidly replacing the 74xx and 74LSxx series.

(Advanced Low-power Schottky) VCC5V

2.7V

2.0V

0.8V
0.4V

Input/Output voltage levels
Year introduced:  1979
Voltage supply: 4.5 to 5.5V

Comments

xx74F00x

74F TTL series

Quad 2-input NAND

Faster than the 74ALSxx series.  It also has improved
noise margins, reduced input currents and better
driving capabilities.  Handles heavier capacitive loads
than eariler TTL families.

(Fast logic) VCC5V

2.7V

2.0V

0.8V
0.5V

Input/Output voltage levels
Year introduced:  1983
Voltage supply: 4.5 to 5.5V

Comments

I
IH(max)

 = 40µA (sink)

IIL(max)  = -1.6mA (source)

I
OH(max)  = -0.4mA (source)

IOL(max)  = 16mA (sink)

Year introduced:  1974
Voltage supply: 4.5 to 5.5V

IOH(max)  = -0.4mA (source)
IOL(max)  = 4mA (sink)

IIH(max)  = 20µA (sink)

IIL(max)  = -400µA (source)

Year introduced:  1976
Voltage supply: 4.5 to 5.5V

IOH(max)  = -0.4mA (source)

IOL(max)  = 8mA (sink)

IIH(max)  = 20µA (sink)

IIL(max)  = -0.1mA (source)

VOH(min)

VIH(min)

VIL(max)

V
OL(max)

VOH(min)

VIH(min)

VIL(max)

VOL(max)

VOH(min)

VIH(min)

VIL(max)

VOL(max)

VOH(min)

VIH(min)

VIL(max)

VOL(max)

PD = 20 mW/gate

IIL(max)  = -2.0mA (source)

IOH(max)  = -1.0mA (source)

IOL(max)  = 20mA (sink)

IIH(max)  = 50µA (sink)

PD = 2 mW/gate

PD = 1 mW/gate

IIL(max)  = -1mA (source)

IOH(max)  = -0.6mA (source)

IOL(max)  = 20mA (sink)

PD = 4 mW/gate

IIH(max)  = 20µA (sink)

tPHL = 8ns, tPLH = 13ns
fmax = 35 MHz

tPHL = 5ns, tPLH = 5ns
fmax = 125 MHz

tPHL = 8ns, tPLH = 8ns
fmax = 45 MHz

tPHL = 7ns, tPLH = 5ns
fmax = 35 MHz

tPHL = 3.7ns, tPLH = 3.2ns
fmax = 100 MHz

FIGURE 12.58
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CMOS Series

HEF4011BTD

4000 CMOS series

Quad 2-input NAND

The 4000 series is the orignal CMOS line--the
4000B series is an improvement.  Supply
voltages range from 3 to 18V, with V

IH
 = 2/3V

CC
and VOH = 1/3VCC . Was popular due to low
power consumption when compared to TTL.
Considered obsolete when compared to the
newer CMOS line of IC's, and is much slower
than any of the TTL series.  The 4000 series is
also susceptible to damage from electrostatic
discharge.

Mfr's
prefix

package
type

part #

VCC5V
4.9V

3.3V

1.7V

0.1V

Input/Output voltage levels
Year introduced:  1970
Voltage supply: 3 to 18V
PD = 1mW/gate at 1 MHz
tPHL = 50ns, tPLH = 65ns

Comments

xx74HC00x

74HC CMOS series

Quad 2-input NAND

Improvement in speed over the 4000 CMOS series; as
speedy as the 74LSxx TTL series, depending on the
operating frequency.  Also provides greater noise
immunity and greater voltage and temperature
operating ranges than TTL. This is a very popular
series used today.

(High-speed CMOS) VCC5V
4.4V

3.5V

1V

0.1V

Input/Output voltage levels
Year introduced:  1975
Voltage supply: 2 to 6V

Comments

xx74HCT00x

74HCT CMOS series

Quad 2-input NAND

Like the 74HCxx CMOS series but is also TTL
compatable (it's pin compatible, as well as input/
output voltage-level compatable).

(High-speed CMOS, TTL compatible) V
CC

5V

3.8V

2.0V

0.8V
0.4V

Input/Output voltage levels

Year introduced:  1975
Voltage supply: 4.5 to 5.5V

Comments

xx74AC00x

74AC CMOS series

Quad 2-input NAND

Further improvement of the 74HCxx series; it's faster,
has a higher output current drive capacity, and
provides shorter propagation delays.

(Advanced CMOS) VCC5V

4.2V

3.15V

1.5V

0.5V

Input/Output voltage levels

Year introduced:  1985
Voltage supply: 3 to 5.5V

Comments

xx74ACT00x

74ACT CMOS series

Quad 2-input NAND

(Advanced CMOS, TTL compatible) VCC5V

3.8V

2.0V

0.8V
0.4V

Input/Output voltage levels
Year introduced:  1985
Voltage supply: 4.5 to 5.5V

Comments

(4000B improved version)

IOH(max)  = -3.0mA (source)

IOL(max)  = 3.0mA (sink)

IIH(max)  = 1µA (sink)

IIL(max)  = -1µA (source)

IOH(max)  = -4mA (source)

IOL(max)  = 4mA (sink)

IIH(max)  = 1µA (sink)

IIL(max)  = -1µA (source)

when VCC= +5V

when VCC= +5V

IIH(max)  = 1µA (sink)
IIL(max)  = -1µA (source)

IOH(max)  = -4mA (source)

IOL(max)  = 4mA (sink)

VOH(min)

VIH(min)

VIL(max)

V
OL(max)

VOH(min)

VIH(min)

VIL(max)

V
OL(max)

VOH(min)

VIH(min)

VIL(max)

VOL(max)

VOH(min)

VIH(min)

VIL(max)

VOL(max)

PD = 0.5mW/gate at 1 MHz

PD = 0.5mW/gate at 1 MHz

when VCC= +5V

PD = 0.5mW/gate at 1 MHz

PD = 0.5mW/gate at 1 MHz Like the 74ACxx CMOS series but is also TTL
compatable (it's pin compatible, as well as input/
output voltage-level compatable).

xx74AHC00x

74AHC / 74AHCT CMOS series

Quad 2-input NAND

(Advanced High-speed/ TTL compatible CMOS) Advanced high-speed CMOS is an
enhanced version of the 74HC and
74HCT series; the 74AHC has half the
static power consumption, one-third the
propagation delay.  The 74AHCT is TTL
compatible.  Introduced in 1996.

xx74AHCT00x

Quad 2-input NAND

V
CC

5V

4.4V

3.5V

1.5V

0.5V

74AHC

VOH(min)

VIH(min)

VIL(max)

VOL(max)

VOH(min)

VIH(min)

VIL(max)

VOL(max)

V
CC

5V

2.4V
2.0V

0.8V

0.4V

74AHCT

VOH(min)

VIH(min)

VIL(max)

VOL(max)

fmax = 6 MHz

tPHL = 20ns, tPLH = 20ns
fmax = 20 MHz

tPHL = 40ns, tPLH = 40ns
fmax = 24 MHz

tPHL = 3ns, tPLH = 3ns
fmax = 125 MHz
IIH(max)  = 1µA (sink)

IIL(max)  = -1µA (source)

IOH(max)  = -24mA (source)

IOL(max)  = 24mA (sink)

IIH(max)  = 1µA (sink)

IIL(max)  = -1µA (source)

IOH(max)  = -24mA (source)

IOL(max)  = 24mA (sink)

t
PHL

 = 5ns, t
PLH

 = 5ns
fmax = 125 MHz

FIGURE 12.59
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12.4.6 A Look at a Few Other Logic Series

The 74-BiCMOS Series

The 74-BiCMOS series of devices incorporates the best features of bipolar and CMOS
technology together in one package. The overall effect is an extremely high-speed,
low-power digital logic family. This product line is especially well suited for and is
mostly limited to microprocessor bus interface logic. Each manufacturer uses a dif-
ferent suffix to identify its BiCMOS line. For example, Texas Instruments uses
74BCTxx, while Signetics (Phillips) uses 74ABTxx.

74-Low-Voltage Series

The 74-low-voltage series is a relatively new series that uses a nominal supply volt-
age of 3.3 V. Members of this series include the 74LV (low-voltage HCMOS), 74LVC
(low-voltage CMOS), the 74LVT (low-voltage technology), and the 74ALVC
(advanced low-voltage CMOS). See Fig. 12.60.

A relatively new series of logic using a nominal
supply voltage of 3.3 V which are designed for
extremely low-power and low-voltage applica-
tions (e.g., battery-powered devices). The
switching speed of LV logic is extremely fast,
ranging from about 9 ns for LB series down to
2.1 ns for ALVC. Another nice feature of LV
logic is high output drive capability. The LVT,
for example, can sink up to 64 mA and source
up to 32 mA. LVT 1992 BiCMOS, LVC/ALVC
1993 CMOS.

Emitter-Coupled Logic

Emitter-coupled logic (ECL), a member of the bipolar family, is used for extremely
high-speed applications, reaching speeds up to 500 MHz with propagation delays
as low as 0.8 ns. There is one problem with ECL—it consumes a considerable
amount of power when compared with the TTL and CMOS series. ECL is best
suited for use in computer systems, where power consumption is not as big an
issue as speed. The trick to getting the bipolar transistors in an ECL device to
respond so quickly is to never let the transistors saturate. Instead, high and low lev-
els are determined by which transistor in a differential amplifier is conducting
more. Figure 12.61 shows the internal circuitry of an OR/NOR ECL gate. The high
and low logic-level voltages (−0.8 and −17 V, respectively) and the supply voltage
(−5.2 V/0 V) are somewhat unusual and cause problems when interfacing with TTL
and CMOS.

xx74LVxxx

74-Low voltage  series

xx74LVCxxx

xx74LVTxxx xx74ALVCxxx

(Low-Voltage HCMOS) (Low-Voltage CMOS)

(Low-Voltage Technology) (Advanced Low-Voltage CMOS)

74LV series 74LVC series

74LVT series 74ALVC series

3.3V

2.4V

2.0V

0.8V

LV, LVT,
LVC, ALVC

VOH(min)

VIH(min)

VIL(max)

VOL(max)0.4V

0

VCC

FIGURE 12.60
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The OR/NOR gate shown here is composed of
a differential amplifier input stage and an out-
put stage. In the differential amplifier stage, a
reference voltage is setup at Q3’s base via the
voltage divider network (diodes/resistors).
This reference voltage determines the thresh-
old between high and low logic levels. When
the base of Q3 is at a more positive potential
with respect to the emitter of Q1 and Q2, Q3 con-
ducts. When Q5 conducts, the OR output goes
low. If either input A or B is raised to −0.8 V
(high), the base of Q1 or Q2 will be at a higher
potential than the base of Q3, and Q3 will cease
conducting, forcing the OR output high. The
overall effect of the ECL design prevents tran-
sistors from saturating, thereby eliminating
charge buildup on the base of the transistors
that limits switching speeds.

12.4.7 Logic Gates with Open-Collector Outputs

Among the members of the TTL series there exists a special class of logic gates that have
open-collector output stages instead of the traditional totem-pole configuration you
saw earlier. (Within the CMOS family, there are similar devices that are said to have
open-drain output stages). These devices are not to be confused with the typical logic
gates you have seen so far. Logic gates with open-collector outputs have entirely dif-
ferent output characteristics. Figure 12.62 shows a NAND gate with open-collector
(OC) output. Notice that the Q3 transistor is missing in the OC NAND gate. By remov-
ing Q3, the output no longer goes high when A and B logic levels are set to 00, 01, or 10.
Instead, the output floats. When A and B logic levels are both high (1), the output is
grounded. This means that the OC gate can only sink current, it cannot source current!
So how do you get a high output level? You use an external voltage source and a pull-
up resistor, as shown in the center figure below. Now, when the output floats, the
pullup resistor connected to the external voltage source will “pull” the output to 
the same level as the external voltage source, which in this case is at +15 V. That’s right,
you don’t have to use +5 V. That is one of the primary benefits of using OC gates—you
can drive load-requiring voltage levels different from those of the logic circuitry.

-5.2V

A

B

Q1 Q2

Q3

Q4 Q5
Vref

OR

NOR

Logic LOW ≤ -1.7 V
Logic HIGH ≥ -0.8 V

A
B

A+B

A+B

Differential amplifier input stage output stage

Internal circuitry of ECL OR/NOR gate

Internal circuitry of an open-collector NAND gate.  Note
the totem-pole output stage is no longer present.

Using a pull-up resistor with open
collector logic gates.

+15V

Vout
+15V

0

0

Rpull-up

10K

+15V

Vout
0V

1

1

on

Q4

+5V

off

Q4

+5V

Rpull-up

10K

output
"floats"

output is
grounded

+VCC

A
B

C
D

E
F

7433

7409

7401

A
B

C
D

E
F

+VCC

X X

Alternative gate
representation

Wired-AND logic: outputs of all three gates
must float in order to get a HIGH output at X.

4K 1.6K

A
B

VCC = +5V

D1 D2
OUT

1K

When Q4 is
ON the ouput
is LOW.
When Q4 is
OFF the
output floats.

Q4

OC

Q3

Not present
in OC gate

X = A B . C D . ( E+F )

X

FIGURE 12.61

FIGURE 12.62
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Another important feature of OC gates is their ability to sink large amounts of
currents. For example, the 7506 OC inverter buffer/driver IC is capable of sinking 40
mA, which is 10 times the amount of current a standard 7404 inverter can sink. (The
7404 OC buffer/driver has the same sinking ability as the 7406 OC but does not pro-
vide any logic function—it simply acts as a buffer stage.) The ability for an OC gate
to sink a fairly large current makes it useful for driving relays, motors, LED displays,
and other high-current loads. Figure 12.63 shows a number of OC logic gate ICs.

OC gates are also useful in instances where the output from two or more gates or
other devices must be tied together. If you were to use standard gates with totem-
pole output stages, if one gate were to output a high (+5 V) while another gate were
to output a low (0 V), there would be a direct short circuit created, which could cause
either or both gates to burn out. By using OC gates, this problem can be avoided.

When working with OC gates, you cannot apply the same Boolean rules you used
earlier with the standard gates. Instead, you must use what is called wired-AND logic,
which amounts to simply ANDing all gates together, as shown in Fig. 12.62. In other
words, the outputs of all the gates must float in order to get a high output level.

12.4.8 Schmitt-Triggered Gates

There are special-purpose logic gates that come with Schmitt-triggered inputs. Unlike
the conventional logic gates, Schmitt-triggered gates have two input threshold voltages.
One threshold voltage is called the positive threshold voltage (VT+), while the other is called
the negative threshold voltage (VT−). Example Schmitt-triggered ICs include the quad 7404
inverter, the quad 2-input NAND gate, and the dual 4-input NAND gate shown below.

14

13

12

11

10

9

8

1

2

3

4

5

6

7

1A
1Y
2A
2Y
3A
3Y

GND

VCC

6A
6Y
5A
5Y
4A
4Y

7417

Hex buffer/driver with
15V open collector output
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9

8

1
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3
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5

6

7
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1B
1Y
2A
2B
2Y

GND

VCC

4B
4A
4Y
3B
3A
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7409, 74LS09,
74F09, 74HC09, etc.

Quad 2-input AND with
open collector output
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9
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1
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3

4
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6

7
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2A
2Y
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GND

VCC

6A
6Y
5A
5Y
4A
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7405, 74LS05,
74ALS05, 74HC05, etc.

Hex Inverter with open
collector/drain output
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9
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1

2

3

4

5

6

7
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1B
1Y
2A
2B
2Y

GND

VCC

4B
4A
4Y
3B
3A
3Y

7403, 74LS03, 74ALS03,
74HC03, etc.

Quad 2-input NAND gate with
open-collector/drain output

Quad Schmitt-trigger 2-input NANDHex Schmitt-triggered Inverter Dual Schmitt-trigger 4-input NAND
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To get a sense of how these devices work, let’s compare the Schmitt-triggered 7414
inverter gate with a conventional inverter gate, the 7404. With the 7404, to make the out-
put go from high to low or from low to high, the input voltage must fall above or below
the single 2.0-V threshold voltage. However, with the 7414, to make the output go from
low to high, the input voltage must dip below VT− (which is +0.9 V for this particular IC);
to make the output go from high to low, the input voltage must pop above VT+ (which is
+1.7 V for this particular IC). The difference in voltage between VT+ and VT− is called the
hysteresis voltage (see Chap. 7 for details). The symbol used to designate a Schmitt trigger
is based on the appearance of its transfer function, as shown in the figure below.

In terms of applications, Schmitt-triggered devices are quite handy for transform-
ing noisy signals or signals that waver around critical threshold levels into sharply
defined, jitter-free output signals. This is illustrated in the lower graphs shown in Fig.
12.65. The conventional 7404 experiences an unwanted output spike resulting from a
short-term spike present during low-to-high and high-to-low input voltage transitions.
The Schmitt-triggered inverter ignores these spikes because it incorporates hysteresis.

12.4.9 Interfacing Logic Families

Mixing of logic families, in general, should be avoided. Obvious reasons for not mix-
ing include differences in input/output logic levels, supply voltages, and output
drive capability that exist among the various families. Another important reason
involves differences in speed between the various families; if you mix slow-logic ICs
with faster-logic ICs, you can run into timing problems.

There are times, however, when mixing is unavoidable or even desirable. For exam-
ple, perhaps a desired special-purpose device (e.g., memory, counter, etc.) only exists in
CMOS, but the rest of your system consists of TTL. Mixing of families is also common
when driving loads. For example, a TTL gate (often with an open-collector output) is
frequently used as an interface between a CMOS circuit and an external load, such as a
relay or indicator light. A CMOS output, by itself, usually does not provide sufficient
drive current to power such loads. I will discuss driving loads in Section 12.10.

Figure 12.66 shows tricks for interfacing various logic families. These tricks take
care of input/output incompatibility problems as well as supply voltage incompati-
bility problems. The tricks, however, do not take care of any timing incompatibility
problems that may arise.

V
in Vout

V
in Vout

7404 inverter 7414 Schmitt inverter

VT+
1.7V
0.9V

3.4V

0V

VT –

Vout

Vin

Vin
VIH (2.0V)

Vout

0.2V

3.4V

2.0V

3.4V

0V

Vout

Vin

VIH

Vin

(VT+)

Vout

(VT –)

0.2V

3.4V

0.9V 1.7V

transfer function transfer function

FIGURE 12.65
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Figure a.TTL can be directly interfaced with itself or with HCT or ACT.
Figure b. CMOS 74C/4000(B) with VDD = +5 V can drive TTL, HC, HCT, AC, or ACT.
Figure c. HC, HCT, AC, and ACT can directly drive TTL, HC, HCT, AC, ACT, and 74C/4000B (5 V).
Figure d. When 74C/4000(B) uses a supply voltage that is higher than +5 V, a level-shifting buffer IC, like the 4050B, can

be used. The 4050B is powered by a 5-V supply and can accept 0-V/15-V logic levels at its inputs, while providing corre-
sponding 0-V/5-V logic level outputs. The buffer also provides increased output drive current (4000B has a weak output
drive capability when compared to TTL).

Figure e. Recall that the actual high output of a TTL gate is around 3.4 V instead of 5 V. But CMOS (VDD = 5 V) inputs may
require from 4.4 (HC) to 4.9V (4000B) for high input levels. If the CMOS device is of the 74C/4000B series, the actual required
high input voltage depends on the supply voltage and is equal to 2⁄3VDD.To provide enough voltage to match voltage levels, a
pullup resistor is used. The pullup resistor pulls the input to the CMOS gate up to the supply voltage to which the pullup
resistor is connected.

Figure f. Another trick for interfacing TTL with CMOS is to simply use a CMOS TTL-compatible gate, like the 74HCT
or 74ACT.

Figures g, h.These two figures show different methods for interfacing a TTL gate with a CMOS gate set to a higher sup-
ply voltage. In Figure g, a 4504B level-shifting buffer is used. The 4504B requires two supply voltages: a TTL supply (for 
0/5 V levels) and a CMOS supply (for 0 to 15 V levels). In figure h, an open-collector buffer and 10-k pullup resistor are used
to convert the lower-level TTL output voltages into higher-level CMOS input voltages.

12.5 Powering and Testing Logic ICs and General Rules of Thumb

12.5.1 Powering Logic ICs

Most TTL and CMOS logic devices will work with 5V � 0.25V (5 percent) supplies
like the ones shown in Fig. 12.67. The battery supplies should be avoided when using
certain TTL families like the 74xx, 74S, 74AS, and 74F, which dissipate considerably
more current than, say, the CMOS 74HC series. Of course, the low-power, low-
voltage 74LV, 74LVC, 74LVT, 74ALVC, and 74BCT series, which require from 1.2 to
3.6 V with as low as 2.5 µW/gate power dissipation (for 74BCT), are ideal for small
battery-powered applications.

TTL
TTL, HCT
ACT

+5V +5V

+5V+15V

74C/
4000B

4050B level
shifter

TTL

+5V +5V

10K

TTL
HC, AC, 74C/
4000B (5V)

HC, HCT
AC, ACT

+5V +5V

TTL, HC, HCT,
AC, ACT, 74C/
4000B(5V)

74C/
4000B(5V)

+5V +5V

TTL, HC, HCT
AC, ACT
74C/4000B (5V)

TTL

+5V +5V
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AC, ACT,
74C/4000B(5V)

+5V

74HCT34
buffer

V
CC VDD

4504B
level shifter

+5V +15V

TTL
74C/
4000B

+5V +10V
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7407
open-collector

buffer

10K
V

CCV
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a. b. c.

d. e. f.

g. h.

Interfacing logic families
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12.5.2 Power Supply Decoupling

When a TTL device makes a low-to-high or a high-to-low level transition, there is an
interval of time that the conduction times in the upper and lower totem-pole output
transistors overlap. During this interval, a drastic change in power supply current
occurs, which results in a sharp, high-frequency current spike within the supply line. If
a number of other devices are linked to the same supply, the unwanted spike can cause
false triggering of these devices. The spike also can generate unwanted electromagnetic
radiation. To avoid unwanted spikes within TTL systems, decoupling capacitors can be
used. A decoupling capacitor, typically tantalum, from 0.01 to 1 µF (>5 V), is placed
directly across the VCC-to-ground pins of each IC in the system. The capacitors absorb the
spikes and keep the VCC level at each IC constant, thus reducing the likelihood of false
triggering and generally electromagnetic radiation. Decoupling capacitors should be
placed as close to the ICs as possible to keep current spikes local, instead of allowing
them to propagate back toward the power supply. You can usually get by with using one
decoupling capacitor for every 5 to 10 gates or one for every 5 counter or register ICs.

12.5.3 Unused Inputs

Unused inputs that affect the logical state of a chip should not be allowed to float.
Instead, they should be tied high or low, as necessary (floating inputs are liable to
pickup external electrical noise, which leads to erratic output behavior). For example,
a four-input NAND TTL gate that only uses two inputs should have its two unused
inputs held high to maintain proper logic operation. A three-input NOR gate that
only uses two inputs should have its unused input held low to maintain proper logic
operation. Likewise, the CLEAR and PRESET inputs of a flip-flop should be
grounded or tied high, as appropriate.

If there are unused sections within an IC (e.g., unused logic gates within a multi-
gate package), the inputs that link to these sections can be left unconnected for TTL
but not for CMOS. When unused inputs are left unconnected in CMOS devices, the
inputs may pick up unwanted charge and may reach a voltage level that causes out-
put MOS transistors to conduct simultaneously, resulting in a large internal current
spike from the supply (VDD) to ground. The result can lead to excessive supply cur-
rent drain and IC damage. To avoid this fate, inputs of unused sections of a CMOS IC
should be grounded. Figure 12.68 illustrates what to do with unused inputs for TTL
and CMOS NAND and NOR ICs.

1A– 4A
bridge rectifier

"GND"

+5V

0.1µF
35V

C1– C3
1000µF, 35V

C1 C2 C3

117V to 12.6V
transformer

1A fuse
AC
line

78051

3

2

GND
in out

1N4001

+

_
1– 10 µF

"GND"

+5V

6V 0.1µF

+

_

78051

3

2

GND
in out

10µF
"GND"

+5V

9V

5-V line and battery supplies for digital logic circuits

FIGURE 12.67



362 PRACTICAL ELECTRONICS FOR INVENTORS

As a last note of caution, never drive CMOS inputs when the IC’s supply voltage
is removed. Doing so can damage the IC’s input protection diodes.

12.5.4 Logic Probes and Logic Pulsers

Two simple tools used to test logic ICs and circuits include the test probe and logic
pulser, as shown below.

A typical logic probe comes in a penlike package, with metal probe tip and
power supply wires, one red, one black. Red is connected to the positive supply
voltage of the digital circuit (VCC), while black is connected to the ground (VSS) of the
circuit. To test a logic state within a circuit, the metal tip of the probe is applied. If a
high voltage is detected, the probe’s high LED lights up; if a low voltage is detected,
the probe’s low LED turns off. Besides performing simple static tests, logic probes
can perform a few simple dynamic tests too, such as detecting a single momentary
pulse that is too fast for the human eye to detect or detecting a pulse train, such as a
clock signal. To detect a single pulse, the probe’s PULSE/MEMORY switch is
thrown to the MEMORY position. When a single pulse is detected, the internal
memory circuit remembers the single pulse and lights up both the HI LED and
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PULSE LED at the same time. To clear the memory to detect a new single-pulse, the
PULSE/MEMORY switch is toggled. To detect a pulse train, the PULSE/MEMORY
switch is thrown to the PULSE position. When a pulse train is detected, the PULSE
LED flashes on and off. Logic probes usually will detect single pulses with widths as
narrow as 10 ns and will detect pulse trains with frequencies around 100 MHz.
Check the specifications that come with your probe to determine these min/max
limits.

A logic pulser allows you to send a single logic pulse or a pulse train through IC
and circuits, where the results of the applied pulses can be monitored by a logic
probe. Like a logic probe, the pulser comes with similar supply leads. To send a sin-
gle pulse, the SINGLE-PULSE/PULSE-TRAIN switch is set to SINGLE-PULSE, and
then the SINGLE-PULSE button is pressed. To send a pulse train, switch to PULSE-
TRAIN mode. With the pulser model shown in Fig. 12.69, you get to select either one
pulse per second (1 pps) or 500 pulses per second.

12.6 Sequential Logic

The combinational circuits covered previously (e.g., encoders, decoders, multiplex-
ers, parity generators/checkers, etc.) had the property of input-to-output immediacy.
This means that when input data are applied to a combinational circuit, the output
responds right away. Now, combinational circuits lack a very important characteris-
tic—they cannot store information. A digital device that cannot store information is
not very interesting, practically speaking.

To provide “memory” to circuits, you must create devices that can latch onto data
at a desired moment in time. The realm of digital electronics devoted to this subject is
referred to as sequential logic. This branch of electronics is referred to as sequential
because for data bits to be stored and retrieved, a series of steps must occur in a par-
ticular order. For example, a typical set of steps might involve first sending an enable
pulse to a storage device, then loading a group of data bits all at once (parallel load),
or perhaps loading a group of data bits in a serial manner—which takes a number of
individual steps. At a latter time, the data bits may need to be retrieved by first apply-
ing a control pulse to the storage device. A series of other pulses might be required to
force the bits out of the storage device.

To push bits through sequential circuits usually requires a clock generator. The
clock generator is similar to the human heart. It generates a series of high and low
voltages (analogous to a series of high and low pressures as the heart pumps blood)
that can set bits into action. The clock also acts as a time base on which all sequential
actions can be referenced. Clock generators will be discussed in detail later on. Now,
let’s take a look at the most elementary of sequential devices, the SR flip-flop.

12.6.1 SR Flip-Flops

The most elementary data-storage circuit is the SR (set-reset) flip-flop, also referred to
as a transparent latch. There are two basic kinds of SR flip-flops, the cross-NOR SR
flip-flop and the cross-AND SR flip-flop.
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First, let’s consider the cross-NOR SR flip-flop shown above. At first it appears
that figuring out what the cross-NOR SR flip-flop does given only two input voltages
is impossible, since each of the NOR gates’ inputs depend on the outputs—and what
are the outputs anyway? (For now, pretend that Q and Q� are not complements but
separate variables—you could call them X and Y if you like.) Well, first of all, you
know that a NOR gate will output a high (logic 1) only if both inputs are low (logic
0). From this you can deduce that if S = 1 and R = 0, Q must be 1 and Q� must be 0,
regardless of the outputs—this is called the set condition. Likewise, by similar argu-
ment, we can deduce that if S = 0 and R = 1, Q must be 0 and Q� must be 1—this is
called the reset condition.

But now, what about R = 0, S = 0? Can you predict the outputs only given input
levels? No! It is impossible to predict the outputs because the outputs are essential for
predicting the outputs—it is a “catch-22.” However, if you know the states of the out-
puts beforehand, you can figure things out. For example, if you first set the flip-flop
(S = 1, R = 0, Q = 1, Q� = 0) and then apply S = 0, R = 0, the flip-flop would remain set
(upper gate: S = 0, Q = 1 → Q� = 0; lower gate: R = 0, Q� = 0 → Q = 1). Likewise, if you
start out in reset mode (S = 0, R = 1, Q = 0, Q� = 0) and then apply S = 0, R = 0, the flip-
flop remains in reset mode (upper gate: S = 0, Q = 0 → Q� = 1; lower gate: R = 0, Q� =
1 → Q = 0). In other words, the flip-flop remembers, or latches onto, the previous out-
put state even when both inputs go low (0)—this is referred to as the hold condition.

The last choice you have is S = 1, R = 1. Here, it is easy to predict what will happen
because you know that as long as there is at least one high (1) applied to the input to
the NOR gate, the output will always be 0. Therefore, Q = 0 and Q� = 0. Now, there are
two fundamental problems with the S = 1, R = 1 state. First, why would you want to
set and reset at the same time? Second, when you return to the hold condition from S
= 1, R = 1, you get an unpredictable result, unless you know which input returned low
last. Why? When the inputs are brought back to the hold position (R = 0, S = 0, Q = 0,
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Q� = 0), both NOR gates will want to be 1 (they want to be held). But let’s say one of
the NOR gate’s outputs changes to 1 a fraction of a second before the other. In this
case, the slower flip-flop will not output a 1 as planned but will instead output 0. This
is a classic example of a race condition, where the slower gate loses. But which flip-
flop is the slower one? This unstable, unpredictable state cannot be avoided and is
simply not used.

The cross-NAND SR flip-flop provides the same basic function as the NOR SR
flip-flop, but there is a fundamental difference. Its hold and indeterminate states are
reversed. This occurs because unlike the NOR gate, which only outputs a low when
both its inputs are the same, the NAND gate only outputs a high when both its inputs
are the same. This means that the hold condition for the cross-NAND SR flip-flop is
S = 1, R = 1, while the indeterminate condition is S = 0, R = 0.

Here are two simple applications for SR flip-flops.

Switch Debouncer

Say you want to use the far-left switch/pullup resistor circuit (Fig. 12.71) to drive an
AND gate’s input high or low (the other input is fixed high). When the switch is
open, the AND gate should receive a high. When the switch is closed, the gate should
receive a low. That’s what should happen, but that’s not what actually happens.
Why? Answer: Switch bounce. When a switch is closed, the metal contacts bounce a
number of times before coming to rest due to inherent springlike characteristics of the
contacts. Though the bouncing typically lasts no more than 50 ms, the results can lead
to unwanted false triggering, as shown in the far left circuit below. A simple way to
get rid of switch bounce is to use the switch debouncer circuit, shown at center. This
circuit simply uses an SR flip-flop to store the initial switch contact voltage while
ignoring all trailing bounces. In this circuit, when the switch is thrown from the B to
A position, the flip-flop is set. As the switch bounces alternately high and low, the Q
output remains high because when the switch contact bounces away from A, the S
input receives a low (R is low too), but that’s just a hold condition—the output stays
the same. The same debouncing feature occurs when the switch is thrown from posi-
tion A to B.

Latched Temperature or Light Alarm

This simple circuit (Fig. 12.71) uses an SR flip-flop to sound a buzzer alarm when the
temperature (when using a thermistor) or the light intensity (when using a photore-
sistor) reaches a critical level. When the temp/light increases, the resistance of the
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thermistor/photoresistor decreases, and the R input voltage goes down. When the R
input voltage goes below the high threshold level of the NAND gate, the flip-flop is
set, and the alarm is sounded. The alarm will continue to sound until the RESET
switch is pressed and the temp/light level has gone below the critical triggering
level. The pot is used to adjust this level.

Level-Triggered SR Flip-Flop (The Beginning of Clocked Flip-Flops)

Now it would be nice to make an SR flip-flop synchronous—meaning making the S
and R inputs either enabled or disabled by a control pulse, such as a clock. Only
when the clock pulse arrives are the inputs sampled. Flip-flops that respond in this
manner are referred to as synchronous or clocked flip-flops (as opposed to the preced-
ing asynchronous flip-flops). To make the preceding SR flip-flop into a synchronous
or clocked device, simply attach enable gates to the inputs of the flip-flop, as shown
in Fig. 12.72. (Here, the cross-NAND arrangement is used, though a cross-NOR
arrangement also can be used.) Only when the clock is high are the S and R inputs
enabled. When the clock is low, the inputs are disabled, and the flip-flop is placed in
hold mode. The truth table and timing diagram below help illustrate how this
device works.

Edge-Triggered SR Flip-Flops

Now there is an annoying feature with the last level-triggered flip-flop; its S and R
inputs have to be held at the desired input condition (set, reset, no change) for the
entire time that the clock signal is enabling the flip-flop. With a slight alteration,
however, you can make the level-triggered flip-flop more flexible (in terms of tim-
ing control) by turning it into an edge-triggered flip-flop. An edge-triggered flip-
flop samples the inputs only during either a positive or negative clock edge (↑ =
positive edge, ↓ = negative edge). Any changes that occur before or after the clock
edge are ignored—the flip-flop will be placed in hold mode. To make an edge-
triggered flip-flop, introduce either a positive or a negative level-triggered clock
pulse generator network into the previous level-triggered flip-flop, as shown in
Fig. 12.73.

In a positive edge-triggered generator circuit, a NOT gate with propagation
delay is added. Since the clock signal is delayed through the inverter, the output
of the AND gate will not provide a low (as would be the case without a propaga-
tion delay) but will provide a pulse that begins at the positive edge of the clock
signal and lasts for a duration equal to the propagation delay of the NOT gate. It
is this pulse that is used to clock the flip-flop. Within the negative edge-triggered
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generator network, the clock signal is first inverted and then applied through the
same NOT/AND network. The pulse begins at the negative edge of the clock and
lasts for a duration equal to the propagation delay of the NOT gate. The propaga-
tion delay is typically so small (in nanoseconds) that the pulse is essentially an
“edge.”

Pulse-Triggered SR Flip-Flops (Master-Slave Flip-Flops)

A pulse-triggered SR flip-flop is a level-clocked flip-flop; however, for any change
in output to occur, both the high and low levels of the clock must rise and fall.
Pulse-triggered flip-flops are also called master-slave flip-flop; the master accepts the
initial inputs and then “whips” the slave with its output when the negative clock
edge arrives. Another analogy often used is to say that during the positive edge,
the master gets cocked (like a gun), and during the negative clock edge, the slave
gets triggered. Figure 12.74 shows a simplified pulse-triggered cross-NAND SR
flip-flop.
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The master is simply a clocked SR flip-flop that is enabled during the high clock
pulse and outputs Y and Y� (either set, reset, or no change). The slave is similar to the
master, but it gets enabled only during the negative clock pulse (due to the inverter).
The moment the slave is enabled, it uses the Y and Y� outputs of the master as inputs
and then outputs the final result. Notice the preset (PP�R�E�) and clear (CC�L�R�) inputs. 
These are called asynchronous inputs. Unlike the synchronous inputs, S and R, the
asynchronous input disregard the clock and either clear (also called asynchronous
reset) or preset (also called asynchronous set) the flip-flop. When CC�L�R� is high and PP�R�E�
is low, you get asynchronous reset, Q = 1, Q� = 0, regardless of the CLK, S, and R
inputs. These active-low inputs are therefore normally pulled high to make them
inactive. As you will see later when I discuss flip-flop applications, the ability to
apply asynchronous set and resets is often used to clear entire registers that consist of
an array of flip-flops.

General Rules for Deciphering Flip-Flop Logic Symbols

Now, typically, you do not have to worry about constructing flip-flops from
scratch—instead, you buy flip-flop ICs. Likewise, you do not have to worry about
complex logic gate schematics—instead, you use symbolic representations like the
ones shown below. Although the symbols below apply to SR flip-flops, the basic
rules that are outlined can be applied to the D and JK flip-flops, which will be dis-
cussed in following sections.

12.6.2 SR Flip-Flop (Latch) ICs

Figure 12.76 shows a few sample SR flip-flop (latch) ICs. The 74LS279A contains four
independent SR latches (note that two of the latches have an extra set input). This IC
is commonly used in switch debouncers. The 4043 contains four three-state cross-
coupled NOR SR latches. Each latch has individual set and reset inputs, as well as
separate Q outputs. The three-state feature is an extra bonus, which allows you to
effectively disconnect all Q outputs, making it appear that the outputs are open cir-
cuits (high impedance, or high Z). This three-state feature is often used in applica-
tions where a number of devices must share a common data bus. When the output
data from one latch are applied to the bus, the outputs of other latches (or other
devices) are disconnected via the high-Z condition. The 4044 is similar to the 4043 but
contains four three-state cross-coupled NAND RS latches.
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12.6.3 D Flip-Flops

A D-type flip-flop (data flip-flop) is a single input device. It is basically an SR flip-
flop, where S is replaced with D and R is replaced D� (inverted D)—the inverted input
is tapped from the D input through an inverter to the R input, as shown below. The
inverter ensures that the indeterminate condition (race, or not used state, S = 1, R = 1)
never occurs. At the same time, the inverter eliminates the hold condition so that you
are left with only set (D = 1) and reset (D = 0) conditions. The circuit below represents
a level-triggered D-type flip-flop.
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To create a clocked D-type level-triggered flip-flop, first start with the clocked
level-triggered SR flip-flop and throw in the inverter, as shown in Fig. 12.78.
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To create a clocked, edge-triggered D-type flip-flop, take a clocked edge-triggered
SR flip-flop and add an inverter, as shown in Fig. 12.79.
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Here’s a popular edge-trigger D-type flip-flop IC, the 7474 (e.g., 74HC74, etc.). It
contains two D-type positive edge-triggered flip-flops with asynchronous preset and
clear inputs.
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74HC74 Dual D-type positive edge-triggered flip-flop with preset and clear
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Note the lowercase letters l and h in the truth table in this figure. The h is similar
to the H for a high voltage level, and the l is similar to the L for low voltage level;
however, there is an additional condition that must be met for the flip-flop’s output
to do what the truth table indicates. The additional condition is that the D input must
be fixed high (or low) in duration for at least one setup time (ts) before the positive
clock edge. This condition stems from the real-life propagation delays present in flip-
flop ICs; if you try to make the flip-flop switch states too fast (do not give it time to
move electrons around), you can end up with inaccurate output readings. For the
7474, the setup time is 20 ns. Therefore, when using this IC, you must not apply input
pulses that are within the 20-ns limit. Other flip-flops will have different setup times,
so you will have to check the manufacturer’s data sheets. I will discuss setup time
and some other flip-flop timing parameters in greater detail at the end of this section.

D-type flip-flops are sometimes found in the pulse-triggered (master-slave) vari-
ety. Recall that a pulse-triggered flip-flop requires a complete clock pulse before the
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outputs will reflect what is applied at the input(s) (in this case the D input). The fig-
ure below shows the basic structure of a pulse-triggered D flip-flop. It is almost
exactly like the pulse-triggered SR flip-flop, except for the inverter addition to the
master’s input.

12.6.4 A Few Simple D-Type Flip-Flop Applications

In the stop-go indicator circuit, a simple level-triggered D-type flip-flop is used to
turn on a red LED when its D input is low (reset) and turn on a green LED when the
D input is high (set). Only one LED can be turned on at a time.

The divide-by-two counter uses a positive edge-triggered D-type flip-flop to
divide an applied signal’s frequency by two. The explanation of how this works is
simple: The positive edge-triggered feature does not care about negative edges. You
can figure out the rest.

A synchronizer is used when you want to use an external asynchronous control
signal (perhaps generated by a switch or other input device) to control some action
within a synchronous system. The synchronizer provides a means of keeping the
phase of the action generated by the control signal in synch with the phase of the syn-
chronous system. For example, say you want an asynchronous control signal to con-
trol the number of clock pulses that get from point A to point B within a synchronous
system. You might try using a simple enable gate, as shown below the synchronizer
circuit in the figure above. However, because the external control signal is not syn-
chronous (in phase) with the clock, when you apply the external control signal, you
may shorten the first or last output pulse, as shown in the lower timing diagram. Cer-
tain applications do not like shortened clock pulses and will not function properly. To
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avoid shortened pulses, throw in an edge-triggered D-type flip-flop to create a syn-
chronizer. The flip-flop’s CLK input is tapped off the input clock line, its D input
receives the external control signal, and its Q output is connected to the AND gate’s
enable input. With this arrangement, there will never be shortened clock pulses
because the Q output of the flip-flop will not supply enable pulses to the AND gate
that are out of phase with the input clock signal. This is due to the fact that after the
flip-flop’s CLK input receives a positive clock edge, the flip-flop ignores any input
changes applied to the D input until the next positive clock edge.

12.6.5 Quad and Octal D Flip-Flops

Most frequently you will find a number of D flip-flops or D latches grouped together
within a single IC. For example, the 74HC75, shown below, contains four transparent D
latches. Latches 0 and 1 share a common active-low enable E0–E1, while latches 2 and 3
share a common active-low enable E2–E3. From the function table, each Q output fol-
lows each D input as long as the corresponding enable line is high. When the enable line
goes low, the Q output will become latched to the value that D was one setup time prior
to the high-to-low enable transition. The 4042 is another quad D-type latch—an expla-
nation of how it works is provided in the figure below. D-type latches are commonly
used as data registers in bus-oriented systems; the figure below explains the details.

D flip-flops also come in octal form—eight flip-flops per IC. These devices are fre-
quently used as 8-bit data registers within microprocessor systems, where devices share
8-bit or 2 × 8 = 16-bit data or address buses. An example of an octal D-type flip-flop is the
74HCT273 shown in Fig. 12.84. All D flip-flops within the 74HCT273 share a common
positive edge-triggered clock input and a common active-low clear input. When the clock
input receives a positive edge, data bits applied to D0 through D7 are stored in the eight
flip-flops and appear at the outputs Q0 through Q7. To clear all flip-flops, the clear input is
pulsed low. I will talk more about octal flip-flops and other bus-oriented devices later.
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12.6.6 JK Flip-Flops

Finally, we come to the last of the flip-flops, the JK flip-flop. A JK flip-flop resembles
an SR flip-flop, where J acts like S and K acts like R. Likewise, it has a set mode (J = 1, 
K = 0), a reset mode ( J = 0, K = 1), and a hold mode ( J = 0, K = 0). However, unlike the
SR flip-flop, which has an indeterminate mode when S = 1, R = 1, the JK flip-flop has
a toggle mode when J = 1, K = 1. Toggle means that the Q and Q� outputs switch to their
opposite states at each active clock edge. To make a JK flip-flop, modify the SR flip-
flop’s internal logic circuit to include two cross-coupled feedback lines between the
output and input. This modification, however, means that the JK flip-flop cannot be
level-triggered; it can only be edge-triggered or pulse-triggered. Figure 12.85 shows
how you can create edge-triggered flip-flops based on the cross-NAND SR edge-
triggered flip-flop.

Edge-triggered JK flip-flops also come with preset (asynchronous set) and clear
(asynchronous reset) inputs. See Fig. 12.86.
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There are pulse-triggered (master-slave) flip-flops too, although they are not as
popular as the edge-triggered JK flip-flops for an undesired effect that occurs, which
I will talk about in a second. These devices are similar to the pulse-triggered SR flip-
flops with the exception of the distinctive JK cross-coupled feedback connections
from the slave’s Q and Q� outputs back to the master’s input gates. The figure below
shows a simple NAND pulse-triggered JK flip-flop.
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Now there is often a problem with pulse-triggered JK flip-flops. They occasionally
experience what is called ones catching. In ones catching, unwanted pulses or glitches
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caused by electrostatic noise appear on J and K while the clock is high. The flip-flop
remembers these glitches and interprets them as true data. Ones catching normally is
not a problem when clock pulses are of short duration; it is when the pulses get long
that you must watch out. To avoid ones catching all together, stick with edge-
triggered JK flip-flops.

A Few JK Flip-Flop ICs

12.6.7 Applications for JK Flip-Flops

Two major applications for JK flip-flops are found within counter and shift register
circuits. For now, I will simply introduce a counter application—I will discuss shift
registers and additional counter circuits later on in this chapter.

Ripple Counter (Asynchronous Counter)

A simple counter, called a MOD-16 ripple counter (or asynchronous counter), can be con-
structed by joining four JK flop-flops together, as shown in Fig. 12.89. (MOD-16, or
modulus 16, means that the counter has 16 binary states.) This means that it can count
from 0 to 15—the zero is one of the counts.
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Each flip-flop in the ripple counter is fixed in
toggle mode (J and K are both held high). The
clock signal applied to the first flip-flop causes
the flip-flop to divide the clock signal’s fre-
quency by 2 at its Q0 output—a result of the
toggle. The second flip-flop receives Q0’s out-
put at its clock input and likewise divides by 2.
The process continues down the line. What
you get in the end is a binary counter with four
digits. The least significant bit (LSB) is Q0,
while the most significant bit (MSB) is Q4.
When the count reaches 1111, the counter
recycles back to 0000 and continues from there.
To reset the counter at any given time, the
active-low clear line is pulsed low.To make the
counter count backward from 1111 to 0000, you
would simply use the Q� outputs.

The ripple counter above also can be used as a divide-by-2,4,8,16 counter. Here,
you simply replace the clock signal with any desired input signal that you wish to
divide in frequency. To get a divide-by-2 counter, you only need the first flip-flop; to
get a divide-by-8 counter, you need the first three flip-flops.

Ripple counters with higher MOD values can be constructed by slapping on more
flip-flops to the MOD-16 counter. But how do you create a ripple counter with a
MOD value other than 2, 4, 8, 16, etc.? For example, say you want to create a MOD-10
(0 to 9) ripple counter. Likewise, what do you do if you want to stop the counter after
a particular count has been reached and then trigger some device, such as an LED or
buzzer. The figure below shows just such a circuit.

To make a MOD-10 counter, you simply start
with the MOD-16 counter and connect the Q0

and Q3 outputs to a NAND gate, as shown in
the figure. When the counter reaches 9 (1001),
Q0 and Q3 will both go high, causing the NAND
gate’s output to go low. The NAND gate then
sinks current, turning the LED on, while at the
same time disabling the clock-enable gate and
stopping the count. (When the NAND gate is
high, there is no potential difference across the
LED to light it up.) To start a new count, the
active-low clear line is momentarily pulsed
low. Now, to make a MOD-15 counter, you
would apply the same basic approach used to
the left, but you would connect Q1, Q2, and Q3 to
a three-input NAND gate.

Synchronous Counter

There is a problem with the ripple counter just discussed. The output stages of the
flip-flops further down the line (from the first clocked flip-flop) take time to respond
to changes that occur due to the initial clock signal. This is a result of the internal
propagation delay that occurs within a given flip-flop. A standard TTL flip-flop may
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have an internal propagation delay of 30 ns. If you join four flip-flops to create a
MOD-16 counter, the accumulative propagation delay at the highest-order output
will be 120 ns. When used in high-precision synchronous systems, such large delays
can lead to timing problems.

To avoid large delays, you can create what is called a synchronous counter. Synchro-
nous counters, unlike ripple (asynchronous) counters, contain flip-flops whose clock
inputs are driven at the same time by a common clock line. This means that output
transitions for each flip-flop will occur at the same time. Now, unlike the ripple
counter, you must use some additional logic circuitry placed between various flip-flop
inputs and outputs to give the desired count waveform. For example, to create a 4-bit
MOD-16 synchronous counter requires adding two additional AND gates, as shown
below. The AND gates act to keep a flip-flop in hold mode (if both input of the gate are
low) or toggle mode (if both inputs of the gate are high). So, during the 0–1 count, the
first flip-flop is in toggle mode (and always is); all the rest are held in hold mode.
When it is time for the 2–4 count, the first and second flip-flops are placed in toggle
mode; the last two are held in hold mode. When it is time for the 4–8 count, the first
AND gate is enabled, allowing the the third flip-flop to toggle. When it is time for the
8–15 count, the second AND gate is enabled, allowing the last flip-flop to toggle. You
can work out the details for yourself by studying the circuit and timing waveforms.

The ripple (asynchronous) and synchronous counters discussed so far are simple
but hardly ever used. In practice, if you need a counter, be it ripple or synchronous,
you go out and purchase a counter IC. These ICs are often MOD-16 or MOD-10 coun-
ters and usually come with many additional features. For example, many ICs allow
you to preset the count to a desired number via parallel input lines. Others allow you
to count up or to count down by means of control inputs. I will talk in great detail
about counter ICs in a moment.
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12.6.8 Practical Timing Considerations with Flip-Flops

When working with flip-flops, it is important to avoid race conditions. For example,
a typical race condition would occur if, say, you were to apply an active clock edge at
the very moment you apply a high or low pulse to one of the inputs of a JK flip-flop.
Since the JK flip-flop uses what is present on the inputs at the moment the clock edge
arrives, having a high-to-low input change will cause problems because you cannot
determine if the input is high or low at that moment—it is a straight line. To avoid
this type of race condition, you must hold the inputs of the flip-flop high or low for
at least one setup time ts before the active clock transition. If the input changes dur-
ing the ts to clock edge region, the output levels will be unreliable. To determine the
setup time for a given flip-flop, you must look through the manufacturer’s data
sheets. For example, the minimum setup time for the 74LS76 JK flip-flop is 20 ns.
Other timing parameters, such as hold time, propagation delay, etc., are also given by
the manufacturers. A description of what these parameters mean is given below.

Flip-Flop Timing Parameters

IMPORTANT TERMS

Setup time ts—The time required that the input
must be held before the active clock edge for
proper operation. For a typical flip-flop, ts is
around 20 ns.

Hold time th—The time required that the input
must be held after the active clock edge for
proper operation. For most flip-flops, this is 0
ns—meaning inputs need not be held beyond
the active clock signal.

TPLH—Propagation delay from clock trigger
point to the low-to-high Q output swing. A
typical TPLH for a flip-flop is around 20 ns.

TPHL—Propagation delay from clock trigger
point to the high-to-low Q output swing. A
typical TPLH for a flip-flop is around 20 ns.

fmax—Maximum frequency allowed at the clock
input. Any frequency above this limit will
result in unreliable performance. Can vary
greatly.

tW(L)—Clock pulse width (low), the minimum
width (in nanoseconds) that is allowed at the
clock input during the low level for reliable
operation.

tW(H)—Clock pulse width (high), the minimum
width (in nanoseconds) that is allowed at the
clock input during the high level for reliable
operation.

Preset or clear pulse width—Also given by tW(L),
the minimum width (in nanoseconds) of the
low pulse at the preset or clear inputs.
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12.6.9 Digital Clock Generator and Single-Pulse Generators

You have already seen the importance of clock and single-pulse control signals. Now
let’s take a look at some circuits that can generate these signals.

Clocks (Astable Multivibrators)

A clock is simply a squarewave oscillator. In Chap. 9 I discussed ways to generate
square waves—so you can refer back there to learn the theory. Here I will simply
present some practical circuits. Digital clocks can be constructed from discrete com-
ponents such as logic gates, capacitors, resistors, and crystals or can be purchased in
IC form. Here are some sample clock generators.

Figure a. Here, two CMOS inverters are connected together to form an RC relaxation oscillator with squarewave output.
The output frequency is determined by the RC time constant, as shown in the figure.

Figure b.The previous oscillator has one problem—it may not oscillate if the transition regions of its two gates differ, or
it may oscillate at a slightly lower frequency than the equation predicts due to the finite gain of the leftmost gate.The oscil-
lator shown here resolves these problems by adding hysteresis via the additional RC network.

Figure c.This oscillator uses a pair of CMOS NAND gates and RC timing network along with a pot to set the frequency.
A squarewave output is generated with a maximum frequency of around 2 MHz.The enable lead could be connected to the
other input of the first gate, but here it is brought out to be used as an clock enable input (clock is enabled when this lead
is high).

Figure d. Here, a TTL SR flip-flop with dual feedback resistors uses an RC relaxation-type configuration to generate a
square wave. The frequency of the clock is determined by the R and C values, as shown in the figure. Changing the C1-to-
C2 ratio changes the duty cycle.

Figure e. When high stability is required, a crystal oscillator is the best choice for a clock generator. Here, a pair of CMOS
inverters and a feedback crystal are used (see Chap. 8 for details).The frequency of operation is determined by the crystal
(e.g., 2 MHz, 10 MHz, etc.). Adjustment of the pot may be needed to start oscillations.

Figure f. A 555 timer in astable mode can be used to generate square waves. Here, we slap on a JK flip-flop that is in tog-
gle mode to provide a means of keeping the low and high times the same, as well as providing clock-enable control. The
timing diagram and the equations provided within the figure will paint the rest of the picture.

Figure g.The 74S124 dual voltage-controlled oscillator (VCO) outputs square waves at a frequency that is dependent on
the value of an external capacitor and the voltage levels applied its frequency-range input (VRNG) and its frequency control
input (Vfreq).The graph in this figure shows how the frequency changes with capacitance, while VRNG and Vfreq are fixed at 2
V. This device also comes with active-low enable input. Other VCOs that are designed for clock generation include the
74LS624, 4024, and 4046 (PLL).You will find many more listed in the catalogs.
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Monostables (One-Shots)

To generate single-pulse signals of a desired width, you can use a discrete device
called a monostable multivibrator, or one-shot for short. A one-shot has only one stable
state, high (or low), and can be triggered into its unstable state, low (or high) for a
duration of time set by an RC network. One-shots can be constructed from simple
gates, capacitors, and resistors. These circuits, however, tend to be “finicky” and sim-
ply are not worth talking about. If you want a one-shot, you go out and buy a one-
shot IC, which is typically around 50 cents.

Two popular one shots, shown below, are the 74121 nonretriggerable monostable
multivibrator and the 74123 retriggerable monostable multivibrator.

The 74121 has three trigger inputs (A�1, A�2, B), true
and complemented outputs (Q, Q�), and timing
inputs to which an RC network is attached
(Rext/Cext, Cext). To trigger a pulse from the 74123,
you can choose between five possible trigger
combinations, as shown in the truth table in the
figure. Bringing the input trigger in on B, how-
ever, is attractive when dealing with slowly ris-
ing or noisy signals, since the signal is directly
applied to an internal Schmitt-triggered inverter
(recall hystersis).To set the desired output pulse
width (tw), a resistor/capacitor combination is
connected to the Rext/Cext and Cext inputs, as
shown. (An internal 2-k resistor is provided,
which can be used alone by connecting pin 9 to
VCC and placing the capacitor across pins 10 and
11, or which can be used in series with an exter-
nal resistor attached to pin 9. Here, the internal
resistor will not be used.) To determine what val-
ues to give to the external resistor and capacitor,
use the formula given by the manufacturer,
which is shown to the left. The maximum tw

should not exceed 28 s (R = 40 k, C = 1000 µF) for
reliable operation. Also, note that with a nonre-
triggerable one-shot like the 74121, any trigger
pulses applied when the device is already in its
astable state will be ignored.

The 74123 is a dual, retriggerable one-shot.
Unlike nonretriggerable one-shots, this device
will not ignore trigger pulses that are applied
during the astable state. Instead, when a new
trigger pulse arrives during an astable state,
the astable state will continue to be astable for
a time of tw. In other words, the device is simply
retriggered. The 74123 has two trigger inputs
(A�, B) and a clear input (CLR). When CLR is low,
the one-shot is forced back into its stable state
(Q = low). To determine tw, use the formula
given to the left, provided Cext > 1000 pF. If Cext <
1000 pF, use tw/Cext/Rext graphs provided by the
manufacturer to find tw.
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Besides acting as simple pulse generators, one-shots can be combined to make
time-delay generators and timing and sequencing circuits. See the figure below.
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Using a 555 timer as a one-shot to generate unique output waveforms

Now if you do not have a one-shot IC like the 74121, you can use a 555 timer wired
in its monostable configuration, as shown below. (I discussed the 555 in Chap. 8—go
there if you need the details.)

One-Shot/Continuous-Clock Generator

The circuit below is a handy one-shot/continuous clock generator that is useful when
you start experimenting with logic circuits. The details of how this circuit work are
explained below.

In this circuit, switch S2 is used to select whether a single-step or a
continuous-clock input is to be presented to the output. When S2 is
in the single-step position, the cross-NAND SR flip-flop (switch
debouncer) is set (Q = 1, Q� = 0). This disables NAND gate B while
enabling NAND gate A, which will allow a single pulse from the
one-shot to pass through gate C to the output. To trigger the one-
shot, press switch S1. When S2 is thrown to the continuous position,
the switch debouncer is reset (Q = 0, Q� = 1).This disables NAND gate
A and enables NAND gate B, allowing the clock signal generated by
the 555/flip-flop to pass through gate C and to the output. (Just as a
note to avoid confusion, you need gate C to prevent the output from
being low and high at the same time.)
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12.6.10 Automatic Power-Up Clear (Reset) Circuits

In sequential circuits it is usually a good idea to clear (reset) devices when power is first
applied. This ensures that devices, such as flip-flops and other sequential ICs, do not
start out in a weird mode (e.g., counter IC does not start counting at, say, 1101 instead of
0000). The following are some techniques used to provide automatic power-up clearing.

Let’s pretend that one of the devices in a circuit has a JK flip-flop that
needs clearing during power-up. In order to clear the flip-flop and then
quickly return it to synchronous operations, you would like to apply a low
(0) voltage to its active-low clear input; afterwards, you would like the
voltage to go high (at least above 2.0 V for a 74LS76 JK flip-flop). A simple
way to implement this function is to use an RC network like the one
shown in the figure. When the power is off (switch open), the capacitor is
uncharged (0 V).This means that the C�L�R� line is low (0 V). Once the power
is turned on (switch closed), the capacitor begins charging up toward VCC

(+5 V). However, until the capacitor’s voltage reaches 2.0 V, the C�L�R� line is
considered low to the active-low clear input. After a duration of t = RC, the
capacitor’s voltage will have reached 63 percent of VCC, or 3.15 V; after a
duration of t = 5RC, its voltage will be nearly equal to +5 V. Since the
74LS76’s C�L�R� input requires at least 2.0 V to be placed back into synchro-
nous operations, you know that t = RC is long enough.Thus, by rough esti-
mate, if you want the C�L�R� line to remain low for 1 µs after power-up, you
must set RC = 1 µs. Setting R = 1 k and C = 0.001 µF does the trick.

This automatic resetting scheme can be used within circuits that contain
a number of resettable ICs. If an IC requires an active-high reset (not
common), simply throw in an inverter and create an active-high clear
line, as shown in the figure. Depending on the device being reset, the
length of time that the clear line is at a low will be about 1 µs. As more
devices are placed on the clear line, the low time duration will decrease
due to the additional charging paths. To prevent this from occurring, a
larger capacitor can be used.

An improved automatic power-up clear circuit is shown in Fig. 12.99. Here
a Schmitt-triggered inverter is used to make the clear signal switch off
cleanly. With CMOS Schmitt-triggered inverters, a diode and input resis-
tor (R2) are necessary to protect the CMOS IC when power is removed.

12.6.11 More on Switch Debouncers

The switch debouncer shown to the far left in Fig. 12.100 should look familiar. It is sim-
ply a cross-NAND SR-latch-type switch debouncer. Here, a 74LS279A IC is used that
contains 4 SR latches—an ideal choice when you need a number of switch debouncers.

Now, a switch debouncer does not have to be constructed from an SR-latch. In
fact, most any old flip-flop with preset and clear (reset) inputs can be used. For exam-
ple, the middle circuit in Fig. 12.100 uses a 74LS74 D-type flip-flop, along with pullup
resistor, as a switch debouncer. The D input and CLK input are tied to ground so that
the only two modes that can be enacted are the preset and clear modes. Also, the
pullup resistors will always make either the preset input or clear input high, regard-
less of whether or not the switch is bouncing. From these two facts, you can figure out
the rest for yourself, using the truth table for the 74HC74 in Fig. 12.80 as a guide.

Another approach that can be used to debounce an SPST switch is shown in to the
far right in Fig. 12.100. This debouncer uses a Schmitt-triggered inverter along with a
unique RC timing network. When the switch is open, the capacitor is fully charged
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(+5 V), and the output is low. When the switch is closed, the capacitor discharges
rapidly to ground through the 100-Ω resistor, causing the output to go high. Now, as
the switch bounces, the capacitor will repeatedly attempt to charge slowly back to +5
V via the 10-k resistor, and then again will discharge rapidly to zero through the 100-
W resistor, making the output high. By making the 10-k pullup resistor larger than
the 100-Ω discharge resistor, the voltage across the capacitor or the voltage applied to
the inverter’s input will not get a chance to exceed the positive threshold voltage
(VT+) of the inverter during a bounce. Therefore, the output remains high, regardless
of the bouncing switch. In this example, the charge-up time constant (R2C = 10 k × 0.1
µF) ensures sufficient leeway. When the switch is reopened, the capacitor charges up
toward +5 V. When the capacitor’s voltage reaches VT+, the output switches low.

12.6.12 Pullup and Pulldown Resistors

As you learned when dealing with the switch debouncer circuits, a pullup resistor is
used to keep an input high that would otherwise float if left unconnected. If you want
to set the “pulled up” input low, you can ground the pin, say, via a switch. Now, it is
important to get an idea of the size of pullup resistor to use. The key here is to make
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the resistor value small enough so that the voltage drop across it does not weigh
down the input voltage below the minimum high threshold voltage (VIH,min) of the IC.
At the same time, you do not want to make it too small; otherwise, when you ground
the pin, excessive current will be dissipated.

In the left figure on p. 383, a 10-k pullup resistor is used to keep a 74LS device’s
input high. To make the input low, close the switch. To figure out if the resistor is
large enough so as not to weigh down the input, use Vin = +5 V − RIIH, where IIH is the
current drawn into the IC during the high input state, when the switch is open. For a
typical 74LS device, IIH is around 20 µA. Thus, by applying the simple formula, you
find that Vin = 4.80 V, which is well above the VIH,min level for a 74LS device. Now, if
you close the switch to force the input low, the power dissipated through the resistor 
(PD = V2/R) will be (5 V)2/10 k = 25 mW. The graph shown in the figure provides Vin

versus R and PD versus R curves. As you can see, if R becomes too large, Vin drops
below the VIH,min level, and the output will not go high as planned. As R gets smaller,
the power dissipation skyrockets. To determine what value of R to use for a specific
logic IC, you look up the VIH,min and IIH,max values within the data sheets and apply the
simple formulas. In most applications, a 10-k pullup resistor will work fine.

Now you will run into situations where a pulldown resistor is used to keep a
floating terminal low. Unlike a pullup resistor, the pulldown resistor must be smaller
because the input low current IIL (sourced by IC) is usually much larger than IIH. Typ-
ically, a pulldown resistor is around 100 to 1 kΩ. A lower resistance ensures that Vin is
low enough to be interpreted as a low by the logic input. To determine if Vin is low
enough, use Vin = 0 V + IILR. As an example, use a 74LS device with an IIL = 400 µA and
a 500-Ω pulldown resistor. When the switch is open, the input will be 0.20 V—well
below the VIL,max level for the 74LS (∼0.8 V). When the switch is closed, the power dis-
sipated by the resistor will be (5 V)2/500 Ω = 50 mW. The graph shown in Figure
12.101 provides Vin versus R and PD versus R curves. As you can see by the curves, if
R becomes too large, Vin surpasses VIL,max and the output will not be low as planned.
As R gets small, the power dissipation skyrockets. If you have to use a pulldown
resistor/switch arrangement, be wary of the high power dissipation through the
resistor when the switch is closed.

12.7 Counter ICs

A few pages back you saw how flip-flops could be combined to make both asynchro-
nous (ripple) and synchronous counters. Now, in practice, using discrete flip-flops is
to be avoided. Instead, use a prefab counter IC. These ICs cost a buck or two and
come with many additional features, like control enable inputs, parallel loading, etc.
A number of different kinds of counter ICs are available. They come in either syn-
chronous (ripple) or asynchronous forms and are usually designed to count in binary
or binary-coded decimal (BCD).

12.7.1 Asynchronous Counter (Ripple Counter) ICs

Asynchronous counters work fine for many noncritical applications, but for high-
frequency applications that require precise timing, synchronous counters work bet-
ter. (Recall that unlike an asynchronous counter, a synchronous counter contains
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flip-flops that get clocked at the same time, and hence the synchronous counter does
not accumulate nearly as many propagation delays as is the case with the asynchro-
nous counter.) Here are a few asynchronous counter ICs you will find in the elec-
tronics catalogs.

7493 4-Bit Ripple Counter with Separate MOD-2 

and MOD-8 Counter Sections

The 7493’s internal structure consists of four JK flip-flops connected to provide sepa-
rate MOD-2 (0-to-1 counter) and MOD-8 (0-to-7 counter) sections. Both the MOD-2
and MOD-8 sections are clocked by separate clock inputs. The MOD-2 section uses
Cp0 as its clock input, while the MOD-8 section uses Cp1 as its clock input. Likewise,
the two sections have separate outputs—MOD-2’s output is Q0, while MOD-8’s out-
puts consist of Q1, Q2, and Q3. The MOD-2 section can be used as a divide-by-2
counter, while the MOD-8 section can be used as either a divide-by-2 counter (output
tapped at Q1), a divide-by-4 counter (output tapped at Q2), or a divide-by-8 counter
(output tapped at Q3). Now, if you want to create a MOD-16 counter, simply join the
MOD-2 and MOD-8 sections by wiring Q0 to Cp1—while using Cp0 as the single clock
input. The MOD-2, MOD-8, or the MOD-16 counter can be cleared by making both
AND-gated master reset inputs (MR1 and MR2) high. To begin a count, one or both of
the master reset inputs must be made low. When the negative edge of a clock pulse
arrives, the count advances one step. After the maximum count is reached (1 for
MOD-2, 111 for MOD-8, or 1111 for MOD-16), the outputs jump back to zero, and a
new count begins.

7490 4-Bit Ripple Counter with MOD-2 and MOD-5 Counter Sections

The 7490, like the 7493, is another 4-bit ripple counter. However, its flip-flops are
internally connected to provide MOD-2 (count-to-2) and MOD-5 (count-to-5) counter
sections. Again, each section uses a separate clock: Cp0 for MOD-2 and Cp1 for MOD-
5. By connecting Q0 to Cp1 and using Cp0 as the single clock input, a MOD-10 counter
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(decade or BCD counter) can be created. When master reset inputs MR1 and MR2 are
set high, the counter’s outputs are reset to 0—provided that master set inputs MS1

and MS2 are not both high (the MS inputs override the MR inputs). When MS1 and
MS2 are high, the outputs are set to Q0 = 1, Q1 = 0, Q2 = 0, and Q3 = 1. In the MOD-10
configuration, this means that the counter is set to 9 (binary 1001). This master set fea-
ture comes in handy if you wish to start a count at 0000 after the first clock transition
occurs (with master reset, the count starts out at 0001).

7492 Divide-by-12 Ripple Counter with MOD-2 

and MOD-6 Counter Sections

The 7492 is another 4-bit ripple counter that is similar to 7490. However, it has a MOD-
2 and a MOD-6 section, with corresponding clock inputs Cp0 (MOD-2) and Cp1 (MOD-
8). By joining Q0 to Cp1, you get a MOD-12 counter, where Cp0 acts as the single clock
input. To clear the counter, high levels are applied to master reset inputs MR1 and MR2.
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12.7.2 Synchronous Counter ICs

Like the asynchronous counter ICs, synchronous counter ICs come in various MOD
arrangements. These devices usually come with extra goodies, such as controls for up
or down counting and parallel load inputs used to preset the counter to a desired
start count. Synchronous counter ICs are more popular than the asynchronous ICs
not only because of these additional features but also because they do not have such
long propagation delays as asynchronous counters. Let’s take a look at a few popular
IC synchronous counters.

74193 Presettable 4-Bit (MOD-16) Synchronous Up/Down Counter

The 74193 is a versatile 4-bit synchronous counter that can count up or count down and
can be preset to any count desired—at least a number between 0 and 15. There are two
separate clock inputs, CpU and CpD. CpU is used to count up, while CpD is used to count
down. One of these clock inputs must be held high in order for the other input to count.
The binary output count is taken from Q0 (20), Q1 (21), Q2 (22), and Q3 (23). To preset the
counter to any desired count, a corresponding binary number is applied to the parallel
inputs D0 to D3. When the parallel load input (PP�L�) is pulsed low, the binary number is
loaded into the counter, and the count, either up or down, will start from that number.
The terminal count up (TT�C�U) and terminal count down (T�C�D) outputs are normally high.
The TT�C�U output is used to indicate when the maximum count has been reached and the
counter is about to recycle to the minimum count (0000)—carry condition. Specially,
this means that TT�C�U goes low when the count reaches 15 (1111) and the input clock (CpU)
goes from high to low. TT�C�U remains low until CpU returns high. This low pulse at TT�C�U can
be used as an input to the next high-order stage of a multistage counter. The terminal
count down (T�C�D) output is used to indicate that the minimum count has been reached
(0000) and the counter is about to recycle to the maximum count 15(1111)—borrow con-
dition. Specifically, this means that T�C�D goes low when the down count reaches 0000
and the input clock (CpD) goes low. The figure below provides a truth table for the 74193,
along with a sample load, up-count, and down-count sequence.
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74192 Presettable Decade (BCD or MOD-10) 

Synchronous Up/Down Counter

The 74193, shown in Fig. 12.106, is essentially the same device as the 74193, except it
counts up from 0 to 9 and repeats or counts down from 9 to 0 and repeats. When
counting up, the terminal count up (TT�C�U) output goes low to indicate when the max-
imum count is reached (9 or 1001) and the CpU clock input goes from high to low. T�C�U

remains low until CpU returns high. When counting down, the terminal count down
output (TT�C�D) goes low when the minimum count is reached (0 or 0000) and the input
clock CpD goes low. The truth table and example load, count-up, count-down
sequence provided in Fig. 12.106 explains how the 74192 works in greater detail.

74190 Presettable Decade (BCD or MOD-10) Synchronous Up/Down

Counter and the 74191 Presettable 4-Bit (MOD-16) Synchronous

Up/Down Counter

The 74190 and the 74191 do basically the same things as the 74192 and 74193, but the
input and output pins, as well as the operating modes, are a bit different. (The 74190
and the 74191 have the same pinouts and operating modes—the only difference is the
maximum count.) Like the previous synchronous counters, these counters can be pre-
set to any count by using the parallel load (P�L�) operation. However, unlike the previ-
ous synchronous counters, to count up or down requires using a single input, U�/D.
When U�/D is set low, the counter counts up; when U�/D is high, the counter counts
down. A clock enable input (C�E�) acts to enable or disable the counter. When C�E� is 
low, the counter is enabled. When C�E� is high, counting stops, and the current count is
held fixed at the Q0 to Q3 outputs. Unlike the previous synchronous counters, the
74190 and the 74191 use a single terminal count output (TC) to indicate when the
maximum or minimum count has occurred and the counter is about to recycle. In
count-down mode, TC is normally low but goes high when the counter reaches zero
(for both the 74190 and 74191). In count-up mode, TC is normally low but goes high
when the counter reaches 9 (for the 74190) or reaches 15 (for the 74191). The ripple-

MR1 PL Q0 Q1 Q2 Q3

H X X X X XX L L L L

Count up

Reset

C
pU

C
pD

D0 D1 D2 D3 TC
U

TC
D

Mode

L H L
H X X X X XX H L L L L H H
L X L L L LL L L L L L H L
L L H H H HL X L L L L H H
L H H H H HL X L H
H H L L L LL H

Qn = Dn
H H

H X X X XH H H H
L H X X X XH H H

Parallel load

count up
count down Count down

Inputs Ouputs

H = HIGH voltage level; L = LOW voltage level; X = don't care;     = LOW-to-HIGH clock transistion

16

15

14

13

12

11

10

1

2

3

4

5

6

7

V
CC

D
0

MR

TCD

TC
U

PL
D

2

D
1

Q1

Q0

CPD

CP
U

Q
2

Q
3

74192

98 D
3

GND

5

4

14 3 2 6 7

MR

CPU

Q
0

Q
1

Q
2

Q
3

74192

D0 D 1 D2 D 3
TCU

TCDCPD

PL

13

12

91011511

0 7 8 9 0 1 2

count up
1 0 9 8 7

count down

Clear Preset

Sequence
illustrated

TCD

TCU

Q3

Q2

Q1

Q0

CP
D

CPU

D3

D2

D
1

D0

PL

MR

don't care

74192 presettable decade (BCD) up/down counter

Qn = Dn

1

1

1

0

FIGURE 12.106



Digital Electronics 389

clock output (RR�C�) follows the input clock (CP) whenever TC is high. This means, for
example, that in count-down mode, when the count reaches zero, RR�C� will go low
when CP goes low. The RR�C� output can be used as a clock input to the next higher
stage of a multistage counter. This, however, leads to a multistage counter that is not
truly synchronous because of the small propagation delay from CP to RR�C� of each
counter. To make a multistage counter that is truly synchronous, you must tie each
IC’s clock to a common clock input line. You use the TC output to inhibit each suc-
cessive stage from counting until the previous stage is at its terminal count. The fig-
ure below shows various asynchronous (ripple-like) and synchronous multistage
counters build from 74191 ICs.

74163 Presettable 4-Bit (MOD-16) Synchronous Up/Down Counter

The 74160 and 74163 resemble the 74190 and 74191 but require no external gates
when used in multistage counter configurations. Instead, you simply cascade
counter ICs together, as shown in the last figure below. For both devices, a count can
be preset by applying the desired count to the D0 to D3 inputs and then applying a
low to the parallel enable input (P�E�)—the input number is loaded into the counter on
the next low-to-high clock transition. The master reset (M�R�) is used to force all Q out-
put low, regardless of the other input signals. The two clock enable inputs (CEP and
CET) must be high for counting to begin. The terminal count output (TC) is forced
high when the maximum count is reached but will be forced low if CET goes low.
This is an important feature that makes the multistage configuration synchronous,
while avoiding the need for external gating. The truth tables along with the example
load, count-up, count-down timing sequences below should help you better under-
stand how these two devices work.
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74LS90: Divide-by-n frequency counters

60-Hz, 10-Hz, 1-Hz Clock-Pulse Generator

This simple clock-pulse generator provides a
unique way to generate 60-, 10-, and 1-Hz clock
signals that can be used in applications that
require real-time counting. The basic idea is to
take the characteristic 60-Hz ac line voltage
(from the wall socket) and convert it into a lower-
voltage square wave of the same frequency.
(Note that countries other than the United
States typically use 50 Hz instead of 60 Hz. This
circuit, therefore, will not operate as planned if
used overseas.) First, the ac line voltage is
stepped down to 12.6 V by the transformer. The
negative-going portion of the 12.6-V ac voltage is
removed by the zener diode (acts as a half-wave
rectifier). At the same time, the zener diode clips
the positive-going signal to a level equal to its
reverse breakdown voltage (3.9V).This prevents
the Schmitt-triggered inverter from receiving an
input level that exceeds its maximum input rat-
ing.The Schmitt-triggered inverter takes the rec-
tified/chipped sine wave and converts it into a

true square wave.The Schmitt trigger’s output goes low (∼0.2V) when the input voltage exceeds its positive threshold voltage
VT

+ (∼1.7V) and goes high (∼3.4V) when its input falls below its negative threshold voltage VT − (∼0.9V). From the inverter’s out-
put, you get a 60-Hz square wave (or a clock signal beating out 60 pulses per second).To get a 10-Hz clock signal, you slap on a
divide-by-6 counter.To get a 1-Hz signal, you slap a divide-by-10 counter onto the output of the divide-by-6 counter.
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In the circuit above, three 74LS90 MOD-10 counter ICs are used to create a three-digit (decimal)
counter. Features to note here includes an autoreset RC network that acts to reset counters during
power-up via the master reset inputs. Before the count begins, the D flip-flop’s Q� output is held
high, disabling the clock from reaching the first counter’s clock input. When the pushbutton
switch is closed, the flip-flop’s Q� output goes low, enabling the first counter to count. The BCD
outputs of each counter are feed through separate BCD-to-seven-segment decoder/driver ICs,
which in turn drive the LED displays. The far-left counter’s output represents the count’s LSB,
while the far-right counter’s output represents the count’s MSB. As shown, the last counter’s out-
put is wired so that when a count of 600 is reached, an AND gate is enabled, causing the three-
input OR gate to disable the clock (stop count) while also triggering a relay. To reset the counter,
the manual reset switch is momentarily closed.

Synchronous Counter Applications
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74193:  Up-down counter/flasher circuit

The 74193 is made to count up from 0000 to 1111 and is then swtiched to count
down from 1111 to 0000, and then switched to count up again, etc.  The NAND
gates network provide the count-up and count-down control, while the 74154 1-of-
16 decoder accepts the binary count at its address inputs, and then forces an output
that corresponds to the address input LOW, thus turning on corresponding LED.
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This circuit counts up to a desired number from 0 to 15 and then halts, lighting an
LED in the process.   A 1-of-16 decoder is used to convert the 4-bit binary output
from the counter IC into a single output corresponding to the 4-bit binary number.
Here, the circuit is wired to count up to 13 .  When the count reaches 13 (all outputs
of the decoder are HIGH except the "13" output) the NAND gate is disabled,
preventing the clock signal from reaching CPU.

move up
or down
to change
count

FIGURE 12.111

FIGURE 12.112



Digital Electronics 393

12.7.3 A Note on Counters with Displays

If you want to build a fairly sophisticated counter that can display many digits, the
previous techniques are not worth pursuing—there are simply too many discrete
components to work with (e.g., separate seven-segment decoder/driver for each
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Here the switches set the data input to 1101 (13), and the
counter will count down from 13 to 0.  This means that
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data input 1101 is read again, and the countdown is
repeated.
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By cascading two 4-bit 74193 IC's together we get an 8-bit down-counter.  Here we preload the 8-
bit counter with the equivalent of 120 and count down to zero and then repeat.  Actually, after the
first cycle, the counter counts from 119 down to 0 to give us 120 complete clock pulses between
LOW pulses on the second TCD output.

74193:  A larger divide-by-n frequency counter
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digit). A common alternative approach is to use a microcontroller that functions both
as a counter and a display driver. What microcontrollers can do that discrete circuits
have a hard time doing is multiplexing a display. In a multiplexed system, corre-
sponding segments of each digit of a multidigit display are linked together, while the
common lines for each digit are brought out separately. Right away you can see that
the number of lines is significantly reduced; a nonmultiplexed 7-segment 4-digit dis-
play has 28 segment lines and 4 common lines, while the 4-digit multiplexed display
only has 7 + 4 = 11 lines. The trick to multiplexing involves flashing each digit, one
after the other (and recycling), in a fast enough manner to make it appear that the dis-
play is continuously lit. In order to multiplex, the microcontroller’s program must
supply the correct data to the segment lines at the same time that it enables a given
digit via a control signal sent to the common lead of that digit. I will talk about mul-
tiplexing in greater detail in Appendix H.

Another approach used to create multidigit counters is to use a multidigit
counter/display driver IC. One such IC is the ICM7217A four-digit LED display pro-
grammable up/down counter made by Intersil. This device is typically used in hard-
wired applications where thumbwheel switches are used to load data and SPDT
switches are used to control the chip. The ICM7217A provides multiplexed seven-
segment LED display outputs that are used to drive common-cathode displays.

A simple application of the ICM7217A is a four-digit unit counter shown in the
figure above. If you are interested in knowing all the specifics of how this counter
works, along with learning about other applications for this device, check out Inter-
sil’s data sheets via the Internet (www.intersil.com). It is better to learn from the maker
in this case. Also, check out the other counter/display driver ICs Intersil has to offer.
Other manufacturers produce similar devices, so check out their Web sites as well.

12.8 Shift Registers

Data words traveling through a digital system frequently must be temporarily
held, copied, and bit-shifted to the left or to the right. A device that can be used for
such applications is the shift register. A shift register is constructed from a row of
flip-flops connected so that digital data can be shifted down the row either in a left
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or right direction. Most shift registers can handle parallel movement of data bits as
well as serial movement and also can be used to covert from parallel to serial or
from serial to parallel. The figure below shows the three types of shift register
arrangements: serial-in/serial-out, parallel-in/parallel-out, parallel-in/serial-out,
and serial-in/parallel out.

12.8.1 Serial-In/Serial-Out Shifter Registers

The figure below shows a simple 4-bit serial-in/serial-out shift register made from
D flip-flops. Serial data are applied to the D input of flip-flop 0. When the clock line
receives a positive clock edge, the serial data are shifted to the right from flip-flop 0
to flip-flop 1. Whatever bits of data were present at flip-flop 2s, 3s, and 4s outputs
are shifted to the right during the same clock pulse. To store a 4-bit word into this
register requires four clock pulses. The rightmost circuit shows how you can rewire
the flip-flops to make a shift-left register. To make larger bit-shift registers, more flip-
flops are added (e.g., an 8-bit shift register would require 8 flip-flops cascaded
together).

12.8.2 Serial-In/Parallel-Out Shift Registers

Figure 12.117 shows a 4-bit serial-in/parallel-out shift register constructed from D
flip-flops. This circuit is essentially the same as the previous serial-in/serial-out shift
register, except now you attach parallel output lines to the outputs of each flip-flop as
shown. Note that this shift register circuit also comes with an active-low clear input
(C�L�R�) and a strobe input that acts as a clock enable control. The timing diagram
below shows a sample serial-to-parallel shifting sequence.

Serial in
1 0 1 1 0 1 0 010 0...

Serial out
10 0 ... 1 0 1 1 0 1 1 1

1 0 1 1 0 1 1 1

Parallel in

Serial out
1 11 ... 1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0

Parallel out

Serial in
0 11...

Block diagrams of the serial-in/serial-out, parallel-in/serial-out and serial-in/parallel-out shift registers

Simple 4-bit serial-in/serial-out shift registers
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12.8.3 Parallel-In/Serial-Out Shift Register

Constructing a 4-bit parallel-to-serial shift register from D flip-flops requires some
additional control logic, as shown in the circuit below. Parallel data must first be
loaded into the D inputs of all four flip-flops. To load data, the SHIFT/L�O�A�D� is made
low. This enables the AND gates with “X” marks, allowing the 4-bit parallel input
word to enter the D0–D3 inputs of the flip-flops. When a clock pulse is applied during
this load mode, the 4-bit parallel word is latched simultaneously into the four flip-
flops and appears at the Q0–Q3 outputs. To shift the latched data out through the ser-
ial output, the SHIFT/L�O�A�D� line is made high. This enables all unmarked AND
gates, allowing the latched data bit at the Q output of a flip-flop to pass (shift) to the
D input of the flip-flop to the right. In this shift mode, four clock pulses are required
to shift the parallel word out the serial output.

12.8.4 Ring Counter (Shift Register Sequencer)

The ring counter (shift register sequencer) is a unique type of shift register that incor-
porates feedback from the output of the last flip-flop to the input of the first flip-flop.
Figure 12.119 shows a 4-bit ring counter made from D-type flip-flops. In this circuit,
when the SS�T�A�R�T� input is set low, Q0 is forced high by the active-low preset, while Q1,
Q2, and Q3 are forced low (cleared) by the active-low clear. This causes the binary
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word 1000 to be stored within the register. When the S�T�A�R�T� line is brought low, the
data bits stored in the flip-flops are shifted right with each positive clock edge. The
data bit from the last flip-flop is sent to the D input of the first flip-flop. The shifting
cycle will continue to recirculate while the clock is applied. To start fresh cycle, the
S�T�A�R�T� line is momentarily brought low.

12.8.5 Johnson Shift Counter

The Johnson shift counter is similar to the ring counter except that its last flip-flop
feeds data back to the first flip-flop from its inverted output (Q�). In the simple 4-bit
Johnson shift counter shown below, you start out by applying a low to the S�T�A�R�T�
line, which sets presets Q0 high and Q1, Q2, and Q3 low—Q�3 high. In other words,
you load the register with the binary word 1000, as you did with the ring counter.
Now, when you bring S�T�A�R�T� line low, data will shift through the register. However,
unlike the ring counter, the first bit sent back to the D0 input of the first flip-flop will
be high because feedback is from Q�3 not Q3. At the next clock edge, another high is
fed back to D0; at the next clock edge, another high is fed back; at the next edge,
another high is fed back. Only after the fourth clock edge does a low get fed back
(the 1 has shifted down to the last flip-flop and Q�3 goes high). At this point, the shift
register is full of 1s. As more clock pulses arrive, the feedback loop supplies lows to
D0 for the next four clock pulses. After that, the Q outputs of all the flip-flops are low
while Q�3 goes high. This high from Q�3 is fed back to D�0 during the next positive clock
edge, and the cycle repeats. As you can see, the 4-bit Johnson shift counter has 8 out-
put stages (which require 8 clock pulses to recycle), not 4, as was the case with the
ring counter.
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12.8.6 Shift Register ICs

I have just covered the basic theory of shift registers. Now let’s take a look at practi-
cal shift register ICs that contain all the necessary logic circuitry inside.

7491A 8-Bit Serial-In/Serial-Out Shift Register

The 7491A is an 8-bit serial-in/serial-out shift register that consists of eight inter-
nally linked SR flip-flops. This device has positive edge-triggered inputs and a pair
of data inputs (A and B) that are internally ANDed together, as shown in the logic
diagram below. This type of data input means that for a binary 1 to be shifted into
the register, both data inputs must be high. For a binary 0 to be shifted into the reg-
ister, either input can be low. Data are shifted to the right at each positive clock edge.

74164 8-Bit Serial-In/Parallel-Out Shift Register IC

The 74164 is an 8-bit serial-in/parallel-out shift register. It contains eight internally
linked flip-flops and has two serial inputs Dsa and Dsb that are ANDed together. Like
the 7491A, the unused serial input acts as an enable/disable control for the other ser-
ial input. For example, if you use Dsa as the serial input, you must keep Dsb high to
allow data to enter the register, or you can keep it low to prevent data from entering
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the register. Data bits are shifted one position to the right at each positive clock edge.
The first data bit entered will end up at the Q7 parallel output after the eighth clock
pulse. The master reset (M�R�) resets all internal flip-flops and forces the Q outputs low
when it is pulsed low. In the sample circuit shown below, a serial binary number
10011010 (15410) is converted into its parallel counterpart. Note the AND gate and
strobe input used in this circuit. The strobe input acts as a clock enable input; when it
is set high, the clock is enabled. The timing diagram paints the rest of the picture.

75165 8-Bit (Serial-In or Parallel-In)/Serial-Out Shift Register

The 75165 is a unique 8-bit device that can act as either a serial-to-serial shift register
or as a parallel-to-serial shift register. When used as a parallel-to-serial shift register,
parallel data are applied to the D0–D7 inputs and then loaded into the register when
the parallel load input (P�L�) is pulsed low. To begin shifting the loaded data out the
serial output Q7 (or Q�7 if you want inverted bits), the clock enable input (C�E�) must be
set low to allow the clock signal to reach the clock inputs of the internal D-type flip-
flops. When used as a serial-to-serial shift register, serial data are applied to the serial
data input DS. A sample shift, load, and inhibit timing sequence is shown below.

74194 Universal Shift Register IC

Figure 12.124 shows the 74194 4-bit bidirectional universal shift register. This device
can accept either serial or parallel inputs, provide serial or parallel outputs, and shift
left or shift right based on input signals applied to select controls S0 and S1. Serial data
can be entered into either the serial shift-right input (DSR) or the serial shift-left input
(DSL). Select control S0 and S1 are used to initiate either a hold (S0 = low, S1 = low), shift
left (S0 = low, S1 = high), shift-right (S0 = high, S1 = low), or to parallel load (S0 = high,
S1 = high) mode—a clock pulse must then be applied to shift or parallel load the data.
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In parallel load mode (S0 and S1 are high), parallel input data are entered via the D0

through D3 inputs and are transferred to the Q0 to Q3 outputs following the next low-
to-high clock transition. The 74194 also has an asynchronous master reset (M�R�) input
that forces all Q outputs low when pulsed low. To make a shift-right recirculating reg-
ister, the Q3 output is wired back to the DSR input, while making S0 = high and S1 =
low. To make a shift-left recirculating register, the Q0 output is connected back to the
DSL input, while making S0 = low and S1 = high. The timing diagram below shows a
typical parallel load and shifting sequence.

74299 8-Bit Universal Shift/Storage Register with Three-State Interface

There are a number of shift registers that have three-state outputs—outputs that can
assume either a high, low, or high impedance state (open-circuit or float state). These
devices are commonly used as storage registers in three-state bus interface applica-
tions. An example 8-bit universal shift/storage register with three-state outputs is the
74299, shown in Fig. 12.125. This device has four synchronous operating modes that
are selected via two select inputs, S0 and S1. Like the previous 74194 universal shift
register, the 74299’s select modes include shifting right, shifting left, holding, and
parallel loading (see function table in Fig. 12.125). The mode-select inputs, serial data
inputs (DS0 and DS7) and the parallel-data inputs (I/O0 through I/O7) inputs are pos-
itive edge triggered. The master reset (MM�R�) input is an asynchronous active-low
input that clears the register when pulsed low. The three-state bidirectional I/O port
has three modes of operation: read register, load register, and disable I/O. The read-
register mode allows data within the register to be available at the I/O outputs. This
mode is selected by making both output-enable inputs (OO�E�1 and OO�E�2) low and mak-
ing one or both select inputs low. The load-register mode sets up the register for a
parallel load during the next low-to-high clock transition. This mode is selected by
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setting both select inputs high. Finally, the disable-I/O mode acts to disable the out-
puts (set to a high impedance state) when a high is applied to one or both of the 
output-enable inputs. This effectively isolates the register from the bus to which it is
attached.

12.8.7 Simple Shift Register Applications

16-Bit Serial-to-Parallel Converter

A simple way to create a 16-bit serial-to-parallel converter is to join two 74164 8-bit
serial-in/parallel-out shift registers, as shown below. To join the two ICs, simply
wire the Q7 output from the first register to one of the serial inputs of the second reg-
ister. (Recall that the serial input that is not used for serial input data acts as an
active-high enable control for the other serial input.) In terms of operation, when
data are shifted out Q7 of the first register (or data output D7), they enter the serial
input of the second (I have chosen DSa as the serial input) and will be presented to
the Q0 output of the second register (or data output D8). For an input data bit to reach
the Q7 output of the second register (or data output D15), 16 clock pulses must be
applied.

H = High voltage level; h = High voltage level one setup time prior to the
low-to-high clock transition; L = Low voltage level; l = Low voltage level
one setup time prior to the low-to-high clock transiton; qn = Lowercase
letters indicate the state of the referenced output one setup time prior to the
low-to-high clock transition; X = Don't care;     = Low-to-high clock
transition.
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8-Bit Serial-to-Parallel Converter with Simultaneous Data Transfer

Figure 12.127 shows a circuit that acts as a serial-to-parallel converter that only out-
puts the converted 8-bit word when all 8-bits have been entered into the register.
Here, a 74164 8-bit serial-in/parallel-out shift register is used, along with a 74HCT273
octal D-type flip-flop and a divide-by-8 counter. At each positive clock edge, the ser-
ial data are loaded into the 74164. After eight clock pulses, the first serial bit entered
is shifted down to the 74164’s Q7 output, while the last serial bit entered resides at the
74164’s Q0 output. At the negative edge of the eighth clock pulse, the negative-edge
triggered divide-by-8 circuit’s output goes high. During this high transition, the data
present on the inputs of the 74HCT273 (which hold the same data present at the
74164’s Q outputs) are passed to the 74HCT273’s outputs at the same time. (Think of
the 74HCT273 as a temporary storage register that dumps its contents after every
eighth clock pulse.)

8-Bit Parallel-to-Serial Interface

Here, a 74165 8-bit parallel-to-serial shift register is used to accept a parallel ASCII
word and convert it into a serial ASCII word that can be sent to a serial device. Recall
that ASCII codes are only 7 bits long (e.g., the binary code for & is 010 0110). How do
you account for the missing bit? As it turns out, most 8-bit devices communicating
via serial ASCII will use an additional eighth bit for a special purpose, perhaps to act
as a parity bit, or as a special function bit to enact a special set of characters. Often the
extra bit is simply set low and ignored by the serial device receiving it. To keep things
simple, let’s set the extra bit low and assume that that is how the serial device likes
things done. This means that you will set the D0 input of the 74165 low. The MSB of
the ASCII code will be applied to the D1 input, while the LSB of the ASCII code will
be applied to the D7 input. Now, with the parallel ASCII word applied to the inputs
of the register, when you pulse the parallel load line (PP�L�) low, the ASCII word, along
with the “ignored bit,” is loaded into the register. Next, you must enable the clock to
allow the loaded data to be shifted out, serially, by setting the clock enable input (C�E�)
low for the duration it takes for the clock pulses to shift out the parallel word. After
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the eighth clock pulse (0 to 7), the serial device will have received all 8 serial data bits.
Practically speaking, a microprocessor or microcontroller is necessary to provide the
C�E� and PP�L� lines with the necessary control signals to ensure that the register and ser-
ial device communicate properly.

Recirculating Memory Registers

A recirculating memory register is a shift register that is preloaded with a binary word
that is serially recirculated through the register via a feedback connection from the
output to the input. Recirculating registers can be used for a number of things, from
supplying a specific repetitive waveform used to drive IC inputs to driving output
drivers used to control stepper motors.

In the leftmost circuit in Fig. 12.129, a parallel 4-bit binary word is applied to the
D0 to D3 inputs of a 74194 universal shift register. When the S1 select input is brought
high (switch opened), the 4-bit word is loaded into the register. When the S1 input is
then brought low (switch closed), the 4-bit word is shifted in a serial fashion through
the register, out Q3, and back to Q0 via the DSR input (serial shift-right input) as posi-
tive clock edges arrive. Here, the shift register is loaded with 0111. As you begin shift-
ing the bits through the register, a single low output will propagate down through
high outputs, which in turn causes the LED attached to the corresponding low out-
put to turn on. In other words, you have made a simple Christmas tree flasher.
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The rightmost circuit in Fig. 12.129 is basically the same thing as the last circuit.
However, now the circuit is used to drive a stepper motor. Typically, a stepper motor
has four stator coils that must be energized in sequence to make the motor turn a
given angle. For example, to make a simple stepper motor turn clockwise, you must
energize its stator coils 1, 2, 3, and 4 in the following sequence: 1000, 0100, 0010, 0001,
1000, etc. To make the motor go counterclockwise, apply the following sequence:
1000, 0001, 0010, 0100, 1000, etc. You can generate these simple firing sequences with
the 74194 by parallel loading the D0 to D3 inputs with the binary word 1000. To out-
put the clockwise firing sequence, simply shift bits to the right by setting S0 = high
and S1 = low. As clock pulses arrive, the 1000 present at the outputs will then become
0100, then 0010, 0001, 1000, etc. The speed of rotation of the motor is determined by
the clock frequency. To output the counterclockwise firing sequence, simply shift bits
to the left by setting S0 = low and S1 = high. To drive steppers, it is typically necessary
to use a buffer/driver interface like the 7407 shown below, as well a number of out-
put transistors, not shown. Also, different types of stepper motors may require dif-
ferent firing sequences than the one shown here. Stepper motors and the various
circuits used to drive them are discussed in detail in Chap. 13.

12.9 Three-State Buffers, Latches, and Transceivers

As you will see in a moment, digital systems that use microprocessors require that a
number of different devices (e.g., RAM, ROM, I/O devices, etc.) share a common bus
of some sort. For simple microprocessor systems, the data bus is often 8 bits wide
(eight separate conductors). In order for devices to share the bus, only one device can
be transmitting data at a time—the microprocessor decides which devices get access
to the bus and which devices do not. In order for the microprocessor to control the
flow of data, it needs help from an external register-type device. This device accepts a
control signal issued by the microprocessor and responds by either allowing parallel
data to pass or prohibiting parallel data to pass. Three popular devices used for such
applications are the octal three-state buffer, octal latch/flip-flop, and the transceiver.

12.9.1 Three-State Octal Buffers

A three-state octal buffer is a device that when enabled, passes data present on its
eight inputs to its outputs unchanged. When disabled, input data are prevented from
reaching the outputs—the outputs are placed in a high-impedance state. This high-
impedance state makes data bus sharing between various devices possible. The octal
buffer also can provide additional sink or source current required to drive output
devices. Three popular three-state octal buffers are shown below. The 74xx240 is a
three-state inverting octal buffer, the 74xx241 is a three-state Schmitt-triggered invert-
ing octal buffer, and the 74244 is a conventional three-state octal buffer. The
enable/disable control for all three devices is the same. To enable all eight outputs
(allow data to pass from I inputs to Y outputs), both output enable inputs, O�E�a and
O�E�b must be set low. If you wish to enable only four outputs, make one output enable
high while setting the other low (refer to ICs below to see which output enable con-
trols which group of inverters). To disable all eight outputs, both output enables are
set high. To disable only four outputs, set only one output enable input high.
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Here’s an example of how three-state inverting octal buffers can be used in an 8-
bit microprocessor system. The upper buffer links one bus to a common data bus. The
two lower buffers are used to link input devices to the common data bus. With pro-
gramming and the help of an additional control bus, the microprocessor can select
which buffer gets enabled and which buffers get disabled.

Data from an input device or another bus pass to the data bus only when the corresponding octal
buffer is enabled (input enables made low). Only one input device or bus is allowed to pass data
to the data bus at a time. Here, input device 1 is the only device allowed to pass data to the data
bus because its enable inputs are set low. Note that data are inverted when passed through the
inverting octal buffer.

12.9.2 Three-State Octal Latches and Flip-Flops

A three-state octal latch or octal flip-flop, unlike a three-state octal buffer, has the abil-
ity to hold onto data present at its data inputs before transmitting the data to its out-
puts. In microprocessor applications, where a number of devices share a common
data bus, this memory feature is handy because it allows the processor to store data,
go onto other operations that require the data bus, and come back to the stored data
if necessary. This feature also allows output devices to sample held bus data at leisure
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while the current state of the data bus is changing. To understand how three-state
octal latches and flip-flops work, let’s first consider the 73xx373 three-state octal latch
and the 74xx374 three-state octal flip-flop shown in Fig. 12.132.

The 73xx373 octal latch contains eight D-type “transparent” latches. When its
enable input (E) is high, the outputs (Q0–Q7) follow the inputs (D0–D7). When E is low,
data present at the inputs are loaded into the latch. To place the output in a high-
impedance state, the output enable input (OO�E�) is set high. Figure 12.133 shows a sim-
ple bus-oriented system that uses two 73HC373s to communicate with an input
device and output device. Again, like the octal buffers, control signals are typically
supplied by a microprocessor.

The 74xx374 octal flip-flop comes with eight edge-triggered flip-flops. Unlike 
the octal latch, the 74xx374’s outputs are not “transparent”—they do not follow the
inputs. Instead, a positive clock edge at clock input CP must be applied to load the
device before data are presented at the Q outputs. To place the output in a high-
impedance state, the output enable (OO�E�) input is set high. Figure 12.134 shows a sim-
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ple bus-oriented system that uses two 73HC374s to communicate with two output
devices.

12.9.3 Transceivers

Another method for connecting devices that share a common bus is to use a trans-
ceiver. Unlike the three-state octal buffer, octal latch, and octal flip-flop, the transceiver
is a bidirectional device. This means that when used in a bus-oriented system, exter-
nal devices can read or write from the data bus. The figure below shows the 74xx245
octal transceiver, along with sample application. In the application circuit, a 74LS245
is used as a bidirectional interface between two data buses. To send data from bus A to
bus B, the 74LS245’s transmit/receive input (T/R�) is set high, while the output enable
input (O�E�) is set low. To send data from bus B to bus A, T/R� is set low. To disable the
transceiver’s outputs (place output in a high impedance state) a high is applied to OO�E�.

12.10 Additional Digital Topics

Appendices H to K contain important digital topics regarding digital-to-analog and
analog-to-digital conversion, digital display, memory, and microprocessors and
microcontrollers.
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